タグ

ブックマーク / sinhrks.hatenablog.com (2)

  • Python pandas で日時関連のデータ操作をカンタンに - StatsFragments

    概要 Python で日時/タイムスタンプ関連の操作をする場合は dateutil や arrow を使っている人が多いと思うが、 pandas でもそういった処理がわかりやすく書けるよ、という話。 pandas の領は多次元データの蓄積/変形/集約処理にあるが、日時操作に関連した強力なメソッド / ユーティリティもいくつか持っている。今回は それらを使って日時操作を簡単に行う方法を書いてく。ということで DataFrame も Series もでてこない pandas 記事のはじまり。 ※ ここでいう "日時/タイムスタンプ関連の操作" は文字列パース、日時加算/減算、タイムゾーン設定、条件に合致する日時のリスト生成などを想定。時系列補間/リサンプリングなんかはまた膨大になるので別途。 インストール 以下サンプルには 0.15での追加機能も含まれるため、0.15 以降が必要。 pip

    Python pandas で日時関連のデータ操作をカンタンに - StatsFragments
    Tomato-360
    Tomato-360 2016/01/04
    日付の操作について
  • Theano で Deep Learning <1> : MNIST データをロジスティック回帰で判別する - StatsFragments

    概要 ここ数年 Deep Learning 勢の隆盛いちじるしい。自分が学生の頃は ニューラルネットワークはオワコン扱いだったのに、、、どうしてこうなった?自分もちょっと触ってみようかな、と記事やらスライドやら読んでみても、活性化関数が〜 とか、 制約付き何とかマシンが〜(聞き取れず。何か中ボスっぽい名前)とか、何言っているのかよくわからん。 巷には 中身がわかっていなくてもある程度 使えるパッケージもいくつかあるようだが、せっかくなので少しは勉強したい。 Python 使って できんかな?と思って探してみると、すでに Theano というPython パッケージの開発チームが作った DeepLearning Documentation 0.1 という大部の聖典 (バイブル) があった。 当然だがこの文書では Theano の機能をいろいろ使っているため、ぱっと見では 何をやってんだかよく

    Theano で Deep Learning <1> : MNIST データをロジスティック回帰で判別する - StatsFragments
  • 1