タグ

algorithmとwikipediaに関するa2ikmのブックマーク (12)

  • ボックス=ミュラー法 - Wikipedia

    ボックス=ミュラー法のイメージ。単位正方形(u1, u2)内部の色の付いた点は円状に散布され、2次元正規分布となる。上と右の余白に点で示される曲線は変換後の確率密度関数である。図は有限の区間でのプロットであるが、実際には変換後の分布は無限に広がる。the SVG fileでは、カーソルを合わせた点と関係する点をハイライトする。 ボックス=ミュラー法(ボックス=ミュラーほう、英: Box–Muller's method)とは、一様分布に従う確率変数から標準正規分布に従う確率変数を生成させる手法[1]。計算機シミュレーションにおいて、正規分布に従う擬似乱数の発生に応用される。統計学者ジョージ・ボックス(英語版)とマーヴィン・マラー(ミュラー)によって考案された[2]。 確率変数 X 及び Y が互いに独立で、ともに(0, 1)上での一様分布に従うものとする。このとき、 で定義される Z1, Z

    ボックス=ミュラー法 - Wikipedia
  • Methods of computing square roots - Wikipedia

    Methods of computing square roots are algorithms for approximating the non-negative square root of a positive real number . Since all square roots of natural numbers, other than of perfect squares, are irrational,[1] square roots can usually only be computed to some finite precision: these methods typically construct a series of increasingly accurate approximations. Most square root computation me

    Methods of computing square roots - Wikipedia
  • 幅優先探索 - Wikipedia

    ドイツの都市間の接続を示した例 フランクフルトから幅優先検索を行った場合にできる木構造 幅優先探索(はばゆうせんたんさく、英: breadth first search)はグラフ理論(Graph theory)において木構造(tree structure)やグラフ(graph)の探索に用いられるアルゴリズム。アルゴリズムは根ノードで始まり隣接した全てのノードを探索する。それからこれらの最も近いノードのそれぞれに対して同様のことを繰り返して探索対象ノードをみつける。「横型探索」とも言われる。 幅優先探索は解を探すために、グラフの全てのノードを網羅的に展開・検査する。最良優先探索とは異なり、ノード探索にヒューリスティクスを使わずに、グラフ全体を目的のノードがみつかるまで、目的のノードに接近しているかどうかなどは考慮せず探索する。

    幅優先探索 - Wikipedia
  • ワーシャル–フロイド法 - Wikipedia

    ワーシャル–フロイド法の概略は以下の通りである: 入力: (有向または無向)グラフ の各辺の長さ 出力:頂点 と頂点 を結ぶ最短経路を全ての に対して出力 計算量: 簡単の為 上のグラフ のみを考える。 を 以下の整数とし、 とする。 の 各頂点 に対し、 を に制限したグラフ上での から への最短経路を とする。(経路が無い場合は 「なし」とする。) とし、 を に制限したグラフ上での から への最短経路を とする。 内での から への最短経路は、 を経由するか、あるいは 内にあるかのいずれかであるので、 次が成立することが分かる。ただしここで記号「」は「経路 を進んだ後に経路 を進む」という経路を表す。 : が より短い場合 : そうでない場合。 よって に対する最短経路 が全ての に対して分かっていれば、 に対する最短経路 が全ての に対して求まる。 ワーシャル–フロイド法は以上の考

    ワーシャル–フロイド法 - Wikipedia
  • 最良優先探索 - Wikipedia

    最良優先探索(さいりょうゆうせんたんさく、英: best-first search)は、幅優先探索(英: breadth-first search)を何らかの規則(評価関数)に従って次に探索する最も望ましいノードを選択するように拡張した探索アルゴリズムである。 探索ノードを効率的に選択するには優先度付きキュー(英: priority queue)を用いて実装するのが一般的である。キューに貯めずに最良のノードだけを扱うと山登り法になる。キューを評価関数でソートしないと幅優先探索になる。 最良優先探索の例としてはダイクストラ法(英: Dijkstra's algorithm)やA*アルゴリズム(英: A* search algorithm)や均一コスト探索を挙げることができる。最良優先探索は経路探索においてしばしば使われるアルゴリズムである。コンピュータ将棋・コンピュータチェスなどでも最良優先

  • A* - Wikipedia

    A*探索アルゴリズム A*(A-star、エースター)探索アルゴリズム(エースターたんさくアルゴリズム)は、グラフ探索アルゴリズムの一つ。 最良優先探索を拡張したZ*に、さらにf値として「現時点までの距離」g と「ゴールまでの推定値」h の和を採用したもの[1]。h はヒューリスティック関数と呼ばれる。 A* アルゴリズムは、「グラフ上でスタートからゴールまでの道を見つける」というグラフ探索問題において、ヒューリスティック関数 h(n) という探索の道標となる関数を用いて探索を行うアルゴリズムである。h は各頂点 n からゴールまでの距離のある妥当な推定値を返す関数で、解くグラフ探索問題の種類に応じてさまざまな h を設計することが出来る。例えば、カーナビなどで用いられる単純な二次元の地図での探索では、h としてユークリッド距離 を使うことができ、この値は道に沿った実際の距離のおおまかな予

    A* - Wikipedia
  • ブレゼンハムのアルゴリズム - Wikipedia

    ブレゼンハムのアルゴリズム(Bresenham's line algorithm)は、与えられた始点と終点の間に連続した点を置き、近似的な直線を引くためのアルゴリズム。ブレゼンハムの線分描画アルゴリズム、ブレゼンハムアルゴリズムとも。コンピュータのディスプレイに直線を描画するのによく使われ、整数の加減算とビットシフトのみで実装できるので多くのコンピュータで使用可能である。コンピュータグラフィックスの分野の最初期のアルゴリズムの1つである。これを若干拡張すると、円を描くことができる。 アンチエイリアスをサポートした直線描画アルゴリズム(例えば、Xiaolin Wu's line algorithm)もあるが、ブレゼンハムのアルゴリズムの高速性と単純さは今も重要である。プロッターやビデオカードのGPUといったハードウェアで使用されている。ソフトウェアでは多くのグラフィックスライブラリ(英語版)

    ブレゼンハムのアルゴリズム - Wikipedia
  • Merkle tree - Wikipedia

    An example of a binary hash tree. Hashes 0-0 and 0-1 are the hash values of data blocks L1 and L2, respectively, and hash 0 is the hash of the concatenation of hashes 0-0 and 0-1. In cryptography and computer science, a hash tree or Merkle tree is a tree in which every "leaf" node is labelled with the cryptographic hash of a data block, and every node that is not a leaf (called a branch, inner nod

    Merkle tree - Wikipedia
  • リーキーバケット - Wikipedia

    リーキーバケット(英: leaky bucket)とは、トラフィックシェーピングなどで使われるアルゴリズムである。一般にこのアルゴリズムはネットワークに注入されるデータの転送レートを制御するのに使われ、データ転送レートの「バースト性」を平準化する。 なお、バケット (bucket) とは、バケツのことであり、転送すべきネットワークトラフィックを集積する抽象化されたコンテナである(実装は例えばバッファやキュー)。 トラフィックシェーピングではリーキーバケットのほかにトークンバケットというアルゴリズムもよく利用する。この2つは誤って混同されやすい。これらは性質も異なり、目的も異なる[1]。大きな違いは、リーキーバケットがデータ転送レートの上限を設定するのに対して、トークンバケットはデータ転送レートの平均に制限を課して、ある程度のバースト性を許容する。 リーキーバケットはネットワークに送信するト

  • 遺伝的アルゴリズム - Wikipedia

    遺伝的アルゴリズム(いでんてきアルゴリズム、英語:genetic algorithm、略称:GA)とは、1975年にミシガン大学のジョン・H・ホランド(John Henry Holland)によって提案された近似解を探索するメタヒューリスティックアルゴリズムである。人工生命同様、偶然の要素でコンピューターの制御を左右する。4つの主要な進化的アルゴリズムの一つであり、その中でも最も一般的に使用されている。 遺伝的アルゴリズムはデータ(解の候補)を遺伝子で表現した「個体」を複数用意し、適応度の高い個体を優先的に選択して交叉・突然変異などの操作を繰り返しながら解を探索する。適応度は適応度関数によって与えられる。 この手法の利点は、評価関数の可微分性や単峰性などの知識がない場合であっても適用可能なことである。 必要とされる条件は評価関数の全順序性と、探索空間が位相(トポロジー)を持っていることであ

    遺伝的アルゴリズム - Wikipedia
  • ユークリッドの互除法 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Euclidean algorithm|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針につい

    ユークリッドの互除法 - Wikipedia
  • ノーフリーランチ定理 - Wikipedia

    ノーフリーランチ定理(ノーフリーランチていり、no-free-lunch theorem、NFL)は、物理学者 David H. Wolpert と William G. Macready が生み出した組合せ最適化の領域の定理である。その定義は以下のようになる。 ……コスト関数の極値を探索するあらゆるアルゴリズムは、全ての可能なコスト関数に適用した結果を平均すると同じ性能となる — Wolpert and Macready、1995年 この定理の名称は、ハインラインのSF小説『月は無慈悲な夜の女王』(1966年)で有名になった格言の"There ain't no such thing as a free lunch."に由来する。かつて酒場で「飲みに来た客には昼を無料で振る舞う」という宣伝が行われたが、「無料の昼」の代金は酒代に含まれていて実際には「無料の昼」なんてものは有る訳がない

    ノーフリーランチ定理 - Wikipedia
  • 1