Limited space! Get on waitlist to be the first to know when tickets go live!

処理内容 mapに対しては任意のデータが与えられる。 mapはkeyとvalueからなる大量のデータを戻す。 shuffleにて、全てのmapのkeyをまとめあげて、keyごとにreduce workerにkeyとvalue listを渡す。 reduceは、受け取ったkey/value listを処理する。 key/valueなデータに特化したPlaggerってことで間違いないのかなぁ? mapperで大量のデータから必要な物をフィルタリング(Subscription,Aggregator)して、reducerで実際の処理(Filter,Publish,Notify)を行うというPlaggerみたいな感じ。 全てのmapやreduceに大しての各workerの仕事量は平均的になる様にバランス良く配置する。 多分、mapやreduceの直前で、それぞれのjobの大きさを計測してmanage
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く