はじめに 前回、Chainerの構築方法とMNISTの実行例を紹介しました。 qstairs.hatenablog.com MNISTのようなチュートリアルが実行できただけでは面白くないので、 自分でいろいろ試せられるようになるための方法を勉強していきます。 ということで、 まずは、自分で用意した画像データをChainerで学習できるようにするための下準備について勉強しました。 考え方 Deep Learningの学習に必要なデータといえば、 学習する画像と評価する画像(最悪なくても良いですが)です。 また、学習画像は正解(ラベル)と紐づける必要があります。 よって、 「画像ファイルパス ラベル」 のリストファイルがあれば学習できることになります。 ソースコード リストファイルを作成するソースコードは以下になります。 前提として、画像データはラベル毎のフォルダに分けられていることとします。