タグ

ブックマーク / s0sem0y.hatenablog.com (3)

  • Deep Learning勉強のための書籍【2018年版】 - HELLO CYBERNETICS

    はじめに 初級編 ゼロから作るDeep Learning 中級編 scikit-learnとTensorFlowによる実践機械学習 PythonとKerasによるディープラーニング 上級編 Pro Deep Learning with TensorFlow Deep Learning はじめに ディープラーニングに関する書籍は山ほど出てきています。 その中でどれを読めば良いのか分からない、というのは初心者にとって最初の問題でもあるでしょう。まずはブログなどのネットの情報を参考に勉強をする人が多いかと思われますが、私のブログも含め、大抵は個人の興味に沿ってバラバラに話題が提供されるため、できれば1つ1つ順を追って解説してくれる物が欲しいと感じるのが音と思われます。 今回は、数ある書籍の中でも私自身が所持していておすすめできるディープラーニングの書籍を載せたいと思います。 初級編 ゼロから作

    Deep Learning勉強のための書籍【2018年版】 - HELLO CYBERNETICS
  • 【PyTorch、Chainer、Keras、TensorFlow】ディープラーニングのフレームワークの利点・欠点【2017年10月更新】 - HELLO CYBERNETICS

    ディープラーニングの大流行の中、様々なフレームワークが登場し、気軽にプログラミングができるようになりました。しかし、そんな中どのフレームワークを選べば良いかわからないという人も多いと思います。そんな人に少しでも参考になればと思い記事を書きます。 はじめに Chainer 特徴 柔軟な計算グラフの構築が可能 Pythonによる実装 直感的な計算グラフの構築が可能 メリット・デメリット メリット デメリット まとめ Keras 特徴 とんでもなく簡単に計算グラフを記述可能 高速計算ライブラリのディープラーニング用ラッパー もはやプログラミングの経験すら不要 メリット・デメリット メリット デメリット まとめ TensorFlow 特徴 圧倒的な利用者数 テンソル計算を行うライブラリ Define and Run 追加のライブラリが豊富 メリット・デメリット メリット デメリット まとめ PyT

    【PyTorch、Chainer、Keras、TensorFlow】ディープラーニングのフレームワークの利点・欠点【2017年10月更新】 - HELLO CYBERNETICS
  • HELLO CYBERNETICS

    はじめに 誰向けか 顧客や自身の部下などにデータサイエンスを説明をしなければならない立場の人 機械学習のアルゴリズムには詳しいけどビジネス貢献ってどうやってやるの?という人 データサイエンスのプロジェクトを管理する人 機械学習やデータサイエンスをこれから始める人 感想 はじめに 下記の書籍を以前(結構時間が経ってしまいました)高柳さんから頂いていましたので感想を書きたいと思います。 評価指標入門〜データサイエンスとビジネスをつなぐ架け橋 作者:高柳 慎一,長田 怜士技術評論社Amazon 遅くなった言い訳としては、「個人としては多くの内容が既知であったこと」が挙げられるのですが、この書籍に書かれている内容が未知であるかあやふやな人にとっては当然非常に有用になっています。そして、何よりもその伝え方(書かれ方)が今になって素晴らしいと実感できたためこのタイミングで書くこととしました。 誰向けか

    HELLO CYBERNETICS
  • 1