タグ

ブックマーク / tsujimotter.hatenablog.com (12)

  • (987654321-1)/(123456789+1) がちょうど 8 - tsujimotterのノートブック

    最近、タイムラインで という話をよくみかけます。とても面白い現象ですね。 この問題については、id:egory_cat さんのブログにて、一般の 進法に対して証明が与えられています。 egory-cat.hatenablog.com ブログを拝見させていただきましたが、とても面白かったです! 要するに、分子の数 は に対して を代入した数であり、分母の数 に対して を代入した数であり、これらの比 の小数部分が十分小さな値となることを示せるわけですね。 一方で、Twitter上でこんなツイートも見かけました: (987654321-1)/(123456789+1) = 8 pic.twitter.com/KWrcpmyF11— Poo-Sung Park (@puzzlist) 2021年3月30日 なるほど、上の記号を用いて が成り立つと言うわけですね。これは面白い。 この関係から、一般の

    (987654321-1)/(123456789+1) がちょうど 8 - tsujimotterのノートブック
    aya_momo
    aya_momo 2022/03/15
    10/81=0.1234… 80/81=0.9876…
  • (自由研究)1/p^k型循環小数のフルサイクル性について - tsujimotterのノートブック

    今日は のような 「素数のべき乗分の1」の形の循環小数 について考えたいと思います。 実際、上記の小数を計算してみると となり、 は 42桁、 は 294桁 と、たいへん長い循環節を持つことがわかります。これは後で見るように周囲の循環小数と比べてもかなり長いものとなっています。 この現象の裏には一体どのようなメカニズムが隠されているのでしょうか。 理屈を紐解いてみると、そこには の循環節が ダイヤル数 になることが関係していることに気づきました。 とても面白い(きっと他では知られていない)定理を証明することができましたので、よろしければご覧になってください! 注:今回の記事はtsujimotter自身による独自研究をまとめたものです。内容の信ぴょう性についてはご自身でお確かめください。 1. 目次 目次: 1. 目次 2. きっかけ 3. 実験と日の主定理 4. 循環小数のおさらい 5.

    (自由研究)1/p^k型循環小数のフルサイクル性について - tsujimotterのノートブック
    aya_momo
    aya_momo 2021/10/24
    当然φ(p^k)の約数になるわけだけど、その先に秘密が。/こんなに簡単に証明できるのか。
  • 「隣り合う立方数の差」はどのような素数で割り切れるか? - tsujimotterのノートブック

    今日は久しぶりに数学の話題を。 もりしーさん( @9973_prm )の以下のツイートの話が面白かったので、今日はこの問題について考えてみたいと思います。 立方数と立方数の差って大体素数じゃん、って思ったけど5^3と6^3の差がまさかの91でわろた— もりしー@素数大富豪 (@9973_prm) 2021年8月24日 なお、もりしーさんは次のようにもツイートしています: 隣合う立方数の差— もりしー@素数大富豪 (@9973_prm) 2021年8月24日 つまり、もりしーさんが考えていたのは 「隣り合う立方数(3乗数のこと)の差は素数になるだろうか?」 という問題ですね。 たとえば、最初の4つのケースを考えると (素数)(素数)(素数)(素数) となって、かなり素数が続いています! 面白いです! もちろん、もりしーさんがツイートしているように、すべての隣り合う立方数の差が素数になるわけで

    「隣り合う立方数の差」はどのような素数で割り切れるか? - tsujimotterのノートブック
    aya_momo
    aya_momo 2021/08/27
    n^2+n+41でも同様の議論が成り立つだろうか。/そんなに簡単にはいかない。
  • 「π>3.05を凄すぎる方法で証明」を整数論的に考える - tsujimotterのノートブック

    「」を示す問題が2003年の東大入試で出題されました。これは有名なのでみなさん良くご存じかと思いますが、一方で以下の動画のような解法はご存知でしょうか? www.youtube.com たいへん面白い解法なので、まずは一度ご覧いただきたいです。動画の解説もとても丁寧です。今回の記事はこの動画の内容を前提としてお話したいと思います。 動画の概要欄にもリンクが載っていますが、Yahoo知恵袋の以下の質問の「その他の回答」に載っていた回答が元ネタだそうです。 detail.chiebukuro.yahoo.co.jp 元ネタの人はどうやって発見したんでしょうね。いやー不思議です。 今回私が考えたいのは、いったいどうしてこんな解法が存在するのであろうかということです。登場するパラメータが絶妙なバランスで構成されていて、このような解法が存在すること自体が非自明です。 今回はその背景にある理屈を整数論

    「π>3.05を凄すぎる方法で証明」を整数論的に考える - tsujimotterのノートブック
    aya_momo
    aya_momo 2021/04/22
    元のビデオを見てみたけど、要するに面積より長さを使った方がよい近似ができるということだね。
  • 箸袋で作った図形は正五角形か? - tsujimotterのノートブック

    今日は 箸袋があるとつい作っちゃうこの図形 についての話です。 細長い紙を用意して、上の図をイメージしながら折り曲げて「ぎゅっと」すると、きれいに正五角形が作れてしまいます。 箸袋に限らず、お手元に紙テープなど「細長い帯状のもの」があれば簡単に折ることができます。よかったらぜひやってみてください。 ところで、上で作った図形はたしかに五角形ですが、当に正五角形だろうか? というのが日の問いです。つまり、辺の長さと角の大きさは、厳密にすべて等しいのでしょうか? これまで漠然と正五角形だろうと思っていましたが、よくよく思い返してみると、それを証明したことはありませんでした。一見簡単にできそうな気がしたのですが、やってみたらなかなかチャレンジしがいのある問題でした。 というわけで、今日は「箸袋で作った図形が正五角形であること」を証明してみたいと思います! tsujimotterは昨日の夜にこの

    箸袋で作った図形は正五角形か? - tsujimotterのノートブック
    aya_momo
    aya_momo 2021/03/29
    これは読まずに自分で考えないとダメだね。
  • 保型形式(モジュラー形式)を勉強するとこんなにも楽しい(導入編) - tsujimotterのノートブック

    保型形式 という数学用語を聞いたことはあるでしょうか? 数学好きの方の中には、フェルマーの最終定理の証明で楕円曲線と保型形式が役に立った、という話を聞いたことがある方もいるでしょう。 私が保型形式に出会ったのは、数学ガール「フェルマーの最終定理」というでした。 このの最終章では、保型形式の具体例を計算して、楕円曲線と保型形式の深い関係について、その入口の部分を体感できます。このを読んで「なんだか面白そう」と思った方も多いのではないかと思います。私もその一人です。 数学ガール/フェルマーの最終定理 (数学ガールシリーズ 2) 作者:結城 浩SBクリエイティブAmazon 一方で、さわりの部分だけでは物足りない、もっと保型形式のその先を勉強してみたい、と思う方も多いのではないかと思います。 今回の記事は、そんな「あなた」のための記事です。 この記事を通して詳しく解説しますが、保型形式とは

    保型形式(モジュラー形式)を勉強するとこんなにも楽しい(導入編) - tsujimotterのノートブック
    aya_momo
    aya_momo 2021/03/17
    よく分かった。
  • 1000以下の素数は250個以下であることを示せ(一橋大学・2021年第1問)【※数学ジョーク記事です】 - tsujimotterのノートブック

    一橋大学の問題が僕にも解けそうだったので、解いてみました! 問題(一橋大学・2021年第1問)1000以下の素数は250個以下であることを示せ。 (解答) 1 は素数ではない。 4 は 2 で割り切れるので合成数。 6 は 2 で割り切れるので合成数。 8 は 2 で割り切れるので合成数。 9 は 3 で割り切れるので合成数。 10 は 2 で割り切れるので合成数。 12 は 2 で割り切れるので合成数。 14 は 2 で割り切れるので合成数。 15 は 3 で割り切れるので合成数。 16 は 2 で割り切れるので合成数。 18 は 2 で割り切れるので合成数。 20 は 2 で割り切れるので合成数。 21 は 3 で割り切れるので合成数。 22 は 2 で割り切れるので合成数。 24 は 2 で割り切れるので合成数。 25 は 5 で割り切れるので合成数。 26 は 2 で割り切れるので

    1000以下の素数は250個以下であることを示せ(一橋大学・2021年第1問)【※数学ジョーク記事です】 - tsujimotterのノートブック
    aya_momo
    aya_momo 2021/02/28
    10000以下は1229個だけど、1000以下はいくつだっけってなる。
  • 「23」とフェルマーの最終定理 - tsujimotterのノートブック

    日は 2/23 ということで、この日付にまつわる楽しい数学の話をしたいと思います! お話したいのは、23 という数そのものが持つ性質についてです。 は素数なので、素数についての話かと思った方もいるかもしれません。 もちろん、素数であることは大事なのですが、それだけではありません。 は次のような特徴を持つ素晴らしい数でもあるのです。 を3以上の素数としたとき、 次円分体 の 類数 が より大きくなる最小の は である 整数論を学んだ人にとっては、円分体や類数の意味が理解でき、 そこから23の性質に感動を覚える人も少なくないかと思います。 一方で、円分体や類数をまったく知らない人にとっては、上の説明だけでは何のことかわかりませんよね。私自身、何度か一般向けの講演で上の事実を紹介したことがあるのですが、難しくて理解できなかったという方も多いのではないかと思います。 そんな方でも、今回こそは23

    「23」とフェルマーの最終定理 - tsujimotterのノートブック
    aya_momo
    aya_momo 2021/02/23
    オイラーは別の証明法も示していたからFLT(3)を証明した人と認められているんだよね。
  • 「数体の素元星座定理」に関するプレプリントについて - tsujimotterのノートブック

    2021年 に入ってすぐに、とんでもないニュースが飛び込んできました。もちろん、数学のニュースです。 東北大学の研究チームによる論文のプレプリントがarXivで公開されました。タイトルは "Constellations in prime elements of number fields" で、こちらのリンクからアクセスできます: Constellations in prime elements of number fields Wataru Kai, Masato Mimura, Akihiro Munemasa, Shin-ichiro Seki, Kiyoto Yoshino https://arxiv.org/abs/2012.15669 Wataru Kai, Masato Mimura, Akihiro Munemasa, Shin-ichiro Seki, Kiyoto Yo

    「数体の素元星座定理」に関するプレプリントについて - tsujimotterのノートブック
    aya_momo
    aya_momo 2021/01/02
    ざざっと読んだだけでは、全部は分からない。
  • ABC予想のよくある間違い - tsujimotterのノートブック

    望月新一先生の「宇宙際タイヒミュラー理論」に関する論文が、論文誌に採録されることが決まったというニュースが飛び込んできました。 mainichi.jp 論文の原稿は8年も前から発表されており、その内容の壮大さから、数学好きの間で度々話題になっていました。特に、この理論の系として「ABC予想」と呼ばれる未解決問題が導かれるということが、数学好きとは限らない数多くの人の興味を引きました。 論文の主張が正しいかどうかは、結果的には論文を読んで自分で確かめる他ありません。 (論文誌に掲載されたということは、関連分野の専門家に査読されたということを意味しますが、これは主張の正しさが証明されたことを意味しないからです。) しかしながら、一数学ファンとしては、論文誌に掲載されるというニュースを聞いて、純粋に嬉しい気持ちになりました。 一つの節目として、せっかくなので、自分の中の理解の確認のためにも、AB

    ABC予想のよくある間違い - tsujimotterのノートブック
    aya_momo
    aya_momo 2020/04/05
    途中までしか読んでないけど、間違い2の無限にあるはずの反例が知りたかったのでありがたい。で、bが8の倍数であることを示せればいいわけね。簡単じゃん。
  • 33 = X^3 + Y^3 + Z^3 の整数解 - tsujimotterのノートブック

    今回のテーマは 33 という整数についてです。今朝、アフィンスキームについての重い記事を投稿したばかりですが、この記事では軽い感じでいきましょう。 を固定した自然数として、 なる方程式の整数解を考えたいと思います。 今回の内容を紹介する動画ができました! よろしければこちらもご覧になってください! www.youtube.com たとえば、 の場合は という自明な解があります。ほかにも という解もあります。これはまさにラマヌジャンの見つけたタクシー数 のケースですね。 の場合は となります。整数解なので、マイナスでもいいわけですね。 のときは と表せます。 このように、さまざまな が3つの三乗数の和や差によって表せます。 上記のケースでは解が比較的簡単に求まりましたが、 がもっと大きな値になることもあります。 の組み合わせが見つかっていないような も存在します。 今回の主題は、 のケース、

    33 = X^3 + Y^3 + Z^3 の整数解 - tsujimotterのノートブック
  • 「3の100乗を19で割ったあまりは?」を4通りの方法で計算する - tsujimotterのノートブック

    この記事は 日曜数学 Advent Calendar 2015 の 8日目の記事です。(7日目:京大特色入試, コインの問題を解く | kinebuchitomo) ニコニコ動画の「数学」タグを検索するのが日課の日曜数学者 tsujimotter です。 「数学」で検索すると、当にいろいろな動画が見つかるのです。ぜひお時間あるときに試してみてください。 日曜数学 Advent Calendar 8日目の日は、そんなニコニコ動画で見つけた動画から1つ、みなさんにご紹介したいと思います。 今回ご紹介したいのは、初音ミクが歌うボカロ曲です。タイトルは 「 を で割ったあまりは?」 です。そのタイトル通り、まさに数学の問題をテーマとした珍しい曲です。まずは、ぜひリンク先の動画をご覧ください。 tsujimotter は、心地よいメロディーが素敵な曲だと思いました。この記事を書いている最中、バッ

    「3の100乗を19で割ったあまりは?」を4通りの方法で計算する - tsujimotterのノートブック
    aya_momo
    aya_momo 2015/12/08
    まだ読んでないけど、暗算でも出るぞ。/平方剰余の相互法則は、今回はたまたま使えるわけで、いつも有効であるわけではないことに注意。
  • 1