はじめに 『機械学習のための特徴量エンジニアリング』の書誌情報 Kaggleのワークフロー 1. (探索的データ分析) 2. ベースラインモデルの構築 3. Validationの構築 4. 特徴量エンジニアリング 5. ハイパーパラメータ調整 6. アンサンブル 『機械学習のための特徴量エンジニアリング』の貢献箇所 Kaggle観点で本書をオススメする読者 おわりに はじめに このたび、『機械学習のための特徴量エンジニアリング』をご恵贈いただきました。 Kaggleと親和性が高い書籍名で、Twitterのタイムラインなどを見るに、Kaggleに興味がある層を中心に大きな注目を集めているようです。 本記事では本書の発売に寄せて、Kaggleの自分流のワークフローと「特徴量エンジニアリング」の位置づけについての私見を述べます。その上で本書がKaggleのワークフローのどの部分に寄与するかを説