タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

ProgrammingとalgorithmとQiitaに関するclavierのブックマーク (2)

  • 「998244353 で割ったあまり」の求め方を総特集! 〜 逆元から離散対数まで 〜 - Qiita

    1. なぜ 998244353 で割るのか? 最初はこのような設問を見るとぎょっとしてしまいますが、実はとても自然な問題設定です。 $998244353$ で割らないと、答えの桁数がとてつもなく大きくなってしまうことがあります。このとき以下のような問題が生じます: 多倍長整数がサポートされている言語とされていない言語とで有利不利が生じる 10000 桁にも及ぶような巨大な整数を扱うとなると計算時間が膨大にかかってしまう 1 番目の事情はプログラミングコンテストに特有のものと思えなくもないですが、2 番目の事情は切実です。整数の足し算や掛け算などを実施するとき、桁数があまりにも大きくなると桁数に応じた計算時間がかかってしまいます。実用的にもそのような巨大な整数を扱うときは、いくつかの素数で割ったあまりを計算しておいて、最後に中国剰余定理を適用して復元することも多いです。 なぜ 9982443

    「998244353 で割ったあまり」の求め方を総特集! 〜 逆元から離散対数まで 〜 - Qiita
  • 二分探索アルゴリズムを一般化 〜 めぐる式二分探索法のススメ 〜 - Qiita

    0. はじめに 二分探索法は単純ながらも効果が大きく印象に残りやすいもので、アルゴリズム学習のスタート地点に彩られた花という感じです。二分探索というと「ソート済み配列の中から目的のものを高速に探索する」アルゴリズムを思い浮かべる方が多いと思います。巨大なサイズのデータを扱う場面の多い現代ではそれだけでも十分実用的ですが、二分探索法はもっとずっと広い適用範囲を持っています。 記事では、二分探索法のエッセンスを抽象化して、適用範囲の広い「二分探索法の一般形」を紹介します。同時に無数にある二分探索の実装方法の中でも「めぐる式二分探索」がバグりにくいと感じているので、紹介したいと思います。 注意 1: 二分探索の計算時間について 二分探索の計算時間について簡単に触れておきたいと思います。例えば「$n$ 個の要素からなるソート済み配列から目的の値を探索する」というよく知られた設定であれば、 単純な

    二分探索アルゴリズムを一般化 〜 めぐる式二分探索法のススメ 〜 - Qiita
  • 1