タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

Programmingとpythonとtuningに関するclavierのブックマーク (2)

  • 遅くないpandasの書き方 - ML_BearのKaggleな日常

    これは何? この記事は Kaggle Advent Calendar 2021 の7日目の記事です。 pandasはデータ分析ライブラリとして非常に便利ですが、書き方を間違えると簡単に処理が遅くなってしまうという欠点があります。そこで、この記事では遅くならない書き方をするために気をつけたいポイントをいくつかご紹介したいと思います。 この Colab Notebookの実行結果をエクスポートした上で、不要な部分を一部削って記事にしています。colab notebook をコピーして実行してもらえれば再現することが可能なはずです。(colabにコメント等をいただいても返すことはできないと思います、すみません。) 前提条件 この記事ではあくまで「遅くない(なりづらい)書き方を紹介する」ことに努めます。よって、以下のような改善点はあるが一旦考慮の外におくものとして話を進めます。 並列化ライブラリ

    遅くないpandasの書き方 - ML_BearのKaggleな日常
  • Pythonで省メモリに大量の文字列を扱う工夫 - MNTSQ Techブログ

    たくさんの文字列(や離散的な符号列)をメモリに載せないといけないんだけど、いろんな制約があって通常のList[str]では載らない…ということありませんか?(まぁあんまりなさそうですね) たまたまそういうことがあったので、その際に検討した内容をまとめておきます TL;DR メモリをもっと増やしましょう 富豪的に解決できるならいつでもそれが最高です しかし、世の中それでなんとかならんこともたくさんあります 用途があうのであれば専用のデータ構造を採用する 例えばもし共通のprefixやsuffixが存在し、順序に興味がなければtrie treeなどが使えます 例えば、弊社であれば、法人名をメモリに持ちたいなんてときもあります。そういうときに法人名の辞書をtrieで持ったりすることがあります 「株式会社」「一般財団法人」や「銀行」といった共通語がたくさんでてくるのでtrie treeでごりごり削

    Pythonで省メモリに大量の文字列を扱う工夫 - MNTSQ Techブログ
  • 1