タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

PythonとRとpandasに関するclavierのブックマーク (2)

  • Pythonで実装するアヒル本「StanとRでベイズ統計モデリング」 - Qiita

    アヒルとは アヒル「StanとRでベイズ統計モデリング」、ベイズ界隈では有名な書籍です。 ベイズ推定を実装したい、と思ったときにまず最初に手に取ると良いでしょう。 しかし、ベイズとは何かという点について解説しているではないため、ベイズの枠組みで事例を積み重ねることで事後分布を更新できるために得られる利点などについて納得ができていない方は、ベイズ自体の基礎的な解説を読んでからチャレンジしたほうが良いと思います。 なぜPythonか 上記のオフィシャルでは、タイトルどおり実装はRなんですね。 Pythonで実装したい方も多いと思います。 私もその一人でしたので、Python実装をつくりました。 Python実装にあたって Stanのインターフェイスについては、PyStanでRとほぼ変わらない使いごこちを実現できます。 一方で、データ整形についてはPandasを使うので、Rとはかなり異な

    Pythonで実装するアヒル本「StanとRでベイズ統計モデリング」 - Qiita
  • R ユーザーへの pandas 実践ガイド - Qiita

    概要 R で tidyverse (dplyr+tidyr) に使い慣れているが, Python に乗り換えると pandas がどうも使いにくい, と感じている人の視点で, Rの dplyr などとの比較を通して, pandas の効率的な使い方について書いています. そのため, 「R ユーザーへの」と書きましたが, R経験のない pandas ユーザーであってもなんらかの役に立つと思います. また, 自社インターン学生に対する教材も兼ねています. どちらかというと, 初歩を覚えたての初心者向けの記事となっています. データ分析は一発で終わることはまずなく, 集計・前処理を探索的に行う必要があります. よって, プログラムを頻繁に書き直す必要があり, 普段以上に保守性のある書き方, 例えば参照透過性を考慮した書き方をしたほうが便利です. R の tidyverse の強みとして, 再帰代

    R ユーザーへの pandas 実践ガイド - Qiita
  • 1