タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

Pythonとdataとmemoryに関するclavierのブックマーク (2)

  • 1100万行・32GB超の巨大CSVファイルの基本統計量を4GBメモリマシンで算出する - Qiita

    はじめに この記事は,Kaggle Advent Calendar 2022第6日目の記事になります。 記事では、 32GB超のCSVデータの基統計量を、小規模マシンでも省メモリかつ高速に計算するテクニック について解説します。 Kaggleコンペに限らず、 マシンスペックが低いため、大きなデータセットを満足に処理できず困っている 毎回行うファイル読み込みが遅いので、もっと高速化したい ⚡ といった悩みや課題を抱えている方の参考になれば幸いです。 モチベーション データ分析業務やKaggle等のコンペティションで初めてのデータセットを扱う場合、いきなり機械学習アルゴリズムを行うことはまず無く、最初にデータ観察を行うのが一般的です。 テーブルデータであれば、各カラムの基統計量(最小値、最大値、平均、分散、四分位数)などを計算・可視化し、データクレンジングの要否や特徴量設計の方針などを検

    1100万行・32GB超の巨大CSVファイルの基本統計量を4GBメモリマシンで算出する - Qiita
  • Pythonで省メモリに大量の文字列を扱う工夫 - MNTSQ Techブログ

    たくさんの文字列(や離散的な符号列)をメモリに載せないといけないんだけど、いろんな制約があって通常のList[str]では載らない…ということありませんか?(まぁあんまりなさそうですね) たまたまそういうことがあったので、その際に検討した内容をまとめておきます TL;DR メモリをもっと増やしましょう 富豪的に解決できるならいつでもそれが最高です しかし、世の中それでなんとかならんこともたくさんあります 用途があうのであれば専用のデータ構造を採用する 例えばもし共通のprefixやsuffixが存在し、順序に興味がなければtrie treeなどが使えます 例えば、弊社であれば、法人名をメモリに持ちたいなんてときもあります。そういうときに法人名の辞書をtrieで持ったりすることがあります 「株式会社」「一般財団法人」や「銀行」といった共通語がたくさんでてくるのでtrie treeでごりごり削

    Pythonで省メモリに大量の文字列を扱う工夫 - MNTSQ Techブログ
  • 1