タグ

pythonとChatGPTに関するclavierのブックマーク (3)

  • 「面倒なことはChatGPTにやらせよう」の全プロンプトを実行した配信のリンクを整理しました|カレーちゃん

    Youtubeで配信しながら全プロンプトを実行しましたので、各節へのリンクを整理しました。時間のところにYoutubeへのリンクになっています。 もしずれていたら、その時間まで移動して視聴ください。 はじめに (4:00) 1章 ChatGPTの基礎知識 (5:50) 2章 ChatGPTの基的な使い方 (6:28) 3章 ChatGPT Plusのセットアップ (7:32) 4章 ファイルのアップロードとダウンロード (12:40)4.1 アップロード・ダウンロード (13:03) 4.2 扱うことができるファイル (16:02) 5章 繰り返し作業を一瞬で (16:55)5.1 文字列操作 (17:20) 5.2 正規表現でのパターンマッチ (25:36) →54ページの正規表現でできることの例の説明 (29:09) 5.3 ファイルの一括操作 (46:20) 5.4 QRコード作成

    「面倒なことはChatGPTにやらせよう」の全プロンプトを実行した配信のリンクを整理しました|カレーちゃん
  • GPT連携アプリ開発時の必須知識、RAGをゼロから解説する。概要&Pythonコード例

    こんにちは。わいけいです。 今回の記事では、生成AI界隈ではかなり浸透している RAG について改めて解説していきます。 「低予算で言語モデルを使ったアプリを開発したい」というときに真っ先に選択肢に上がるRAGですが、私自身もRAGを使ったアプリケーションの実装を業務の中で何度も行ってきました。 今回はその知見をシェア出来れば幸いです。 RAG(Retrieval-Augmented Generation)とは まず、 そもそもRAGとは何ぞや? というところから見ていきましょう。 RAG(Retrieval-Augmented Generation) は自然言語処理(NLP)と特に言語モデルの開発において使用される技術です。 この技術は、大規模な言語モデルが生成するテキストの品質と関連性を向上させるために、外部の情報源からの情報を取得(retrieval)して利用します。 要は、Chat

    GPT連携アプリ開発時の必須知識、RAGをゼロから解説する。概要&Pythonコード例
  • 【Python】ChatGPT効率化の為に非同期処理を実装|Clirea

    非同期処理は、データ解析、APIリクエスト、ベクター化など多様なタスクにおいてパフォーマンスを向上させる鍵となる技術です。特に、待ち時間が発生しやすい多数のリクエストや処理を一度に効率よく処理したい場合、この技術は不可欠です。 非同期処理と並列処理の違い非同期処理と並列処理は、よく一緒に取り上げられることが多いですが、実はそれぞれ異なる目的と特性を持っています。 非同期処理非同期処理は、I/O待ち(ディスクへの読み書きやネットワーク通信など)といった待機時間を有効に使いながら、他のタスクを進める技術です。この方法で、全体のプログラムがスムーズに動作します。 並列処理一方で、並列処理は複数の処理を物理的に同時に行う技術です。簡単な例でいえば動画です。動画の再生と音声の再生を遅延が無いよう同時に行っています。 並列処理により、大量のデータ処理や高度な計算を高速に行えます。 まとめ簡単に言えば、

    【Python】ChatGPT効率化の為に非同期処理を実装|Clirea
  • 1