タグ

tipsとnlpに関するclavierのブックマーク (2)

  • Elasticsearchで日本語検索を扱うためのマッピング定義 - ZOZO TECH BLOG

    こんにちは、検索基盤部 検索基盤ブロックの渡です。私は検索基盤ブロックで、主にZOZOTOWNの検索周りのシステム開発に従事しています。 以前の記事では、Elasticsearchのマッピング設定の最適化について取り上げました。そして、今回は日語による形態素解析を実現するまでの手順をご紹介します。 techblog.zozo.com 目次 目次 はじめに Elasticsearchで全文検索を実現させる手順 全文検索のためのマッピング定義 Analyzerの構造 日語対応のAnalyzer 日語対応のためのプラグイン追加 kuromoji Analyzerを指定したマッピング定義の例 kuromojiプラグイン機能 カスタムしたAnalyzerのマッピング定義 Analyzerの動作確認 modeを選択した場合のマッピング定義の例 Analyzer適用の注意点 kuromoji以外の

    Elasticsearchで日本語検索を扱うためのマッピング定義 - ZOZO TECH BLOG
  • Kaggleで学んだBERTをfine-tuningする際のTips①〜学習効率化編〜 | 株式会社AI Shift

    こんにちは AIチームの戸田です 近年、自然言語処理タスクにおいて、BERTを始めとするTransformerをベースとした事前学習モデルを感情分類や質問応答などの下流のタスクでfine-tuningする手法が一般的になっています huggingfaceのTransformersなど、事前学習モデルを簡単に使うことのできるライブラリもありますが、Kaggleなどのコンペティションで上位に入るには素のモデルのままでは難しく、ヘッダや損失関数などの工夫などが必要です 記事では私がKaggleのコンペティションに参加して得た、事前学習モデルのfine-tuningのTipsを共有させていただきます 書きたい内容が多くなってしまったので、今回は学習の効率化について、次回精度改善について、と2回に分けて書かせていただきます 事前準備 学習データとして、先日終了したKaggleのコンペティション、C

    Kaggleで学んだBERTをfine-tuningする際のTips①〜学習効率化編〜 | 株式会社AI Shift
  • 1