「最適化法」第15回(ゲストトーク), 2023年1月20日, 同志社大学.

はじめに プログラミング自体は文系、理系、年齢関わらず勉強すればある程度ものになります。プログラミングがある程度できるようになるとTensorflow,PyTorchやscikit-learn等のライブラリで簡単にできる機械学習やデータサイエンスに興味を持つの必然! これからさらになぜ上手くいくのか・いかないのかの議論をしたい、社内・外に発表したい、理論的な所を理解したい、先端研究を取り入れたい、応用したい等々と次々に実現したい事が増えるのもまた必然でしょう。このときに初めて数学的なバックグラウンドの有無という大きな壁が立ちはだかります。しかし、数学は手段であって目的ではないので自習に使える時間をあまり割きたくないですよね。また、そもそも何から手を付けたら良いかわからないって人もいるかと思います。そんな人に向けた記事です。本記事の目標は式の意図する事はわからんが、仕組みはわかるという状態に
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? TensorFlowは主に機械学習、特に多層ニューラルネットワーク(ディープラーニング)を実装するためのライブラリになりますが、その基本的な仕組みを理解するのにそうした難しい話は特に必要ありません。 本記事では、TensorFlowの仕組みを、算数程度の簡単な計算をベースに紐解いていきたいと思います。 TensorFlowの特徴 初めに、TensorFlowの特徴についてまとめておきたいと思います。 TensorFlowは、その名前の通りTensor(多次元配列、行列などに相当)のFlow(計算処理)を記述するためのツールです。その特徴
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く