Can a neural network learn to recognize doodling? Help teach it by adding your drawings to the world’s largest doodling data set, shared publicly to help with machine learning research.

Photo via Visual Hunt 少し前のことですが、AlphaGoという囲碁の人工知能プログラムがイ・セドル九段に勝利したことで話題になりました。*1 また、一部のゲームにおいて「DQN(Deep Q-network)」が人間よりも上手くプレイするようになったというニュースも話題になっていましたね。*2 今回はこれらの事例で使われている「深層強化学習」という仕組みを使って、FXのシステムトレードができないかと思い、調べてみました。 注意:強化学習もFXも勉強し始めたばかりなので、色々間違っている箇所があるかもしれません。ご指摘いただけると幸いです。 今回の内容 1.強化学習について 1-1.強化学習 1-2.Reinforcement Learning: An Introduction (2nd Edition) 1-3.UCL Course on RL 1-4.強化学習につい
(訳注:2016/9/28、頂きましたフィードバックを元に記事を修正いたしました。) はじめに 本稿では、高速で汎用的なハッシュテーブルを作るために行う、設計についての多くの意思決定事項を紹介します。最終的に、私の emilib::HashSet とC++11の std::unordered_set の間のベンチマークが出来上がりました。もし、ハッシュテーブルに興味があって、自分で設計したいなら(どのプログラミング言語かに関わらず)、本稿がヒントになるかもしれません。 ハッシュテーブル は、素晴らしい発明です。 ならし計算量O(1) ( O(√N)時間 )で、挿入、削除、検索を行うことができます。ならし計算量とは、ハッシュテーブルの計算に平均でO(1)の計算量がかかることを意味しますが、時々、これよりも多くの時間がかかる場合があります。具体的には、ハッシュテーブルに空きがない場合で、挿入の
Elasticsearchを使おうとしているとAnalyzerという概念が出てくるが、このAnalyzerという概念は最初理解することが難しかった。全文検索の仕組みを理解すれば分かるだろうと思い、https://speakerdeck.com/johtani/elasticsearchru-men?slide=5 やhttp://www.atmarkit.co.jp/ait/articles/1111/18/news148.html の記事などを読んで勉強してみたものの、こちらもいろんな言葉が出てきて非常に混乱した。例えば転置インデックス、tf-idf、トークナイズ、ストップワード、N-Gram、正規化などといった言葉が出てくる。 いろいろ調べてみて整理すると、全文検索の技術には、なぜ検索ができるかの話以外に、類似度の話、検索を高速に行うための話、あいまいな検索に対応する話など、いろんな話
ここでは各画像処理におけるアルゴリズムを簡単に解説する。 2値化 明るさ調整 色成分の抽出 色反転 コントラスト調整 切り出し ガンマ補正 グレイスケール化 増色 画像枠付加 鏡像反転 ノイズ除去 輪郭抽出 輪郭追跡 拡大縮小 任意角回転 セピア調化 ぼかし 2値化 指定画像を白と黒の2階調の画像に変換する処理であり、本研究で作成した2値化処理は単一手動閾値方式、P-タイル法、また、誤差分散法およびその拡張型である Floyd&Steinberg 型誤差分散、Jarvice,Judice&Ninke 型誤差分散の5つである。 次にそれぞれのアルゴリズムについて解説する。 単一手動閾値方式 指定された色深度を基準として、その値より入力画素の色深度値が明るければ白、暗ければ黒色として2値化する。下の式を用いている。 このとき、出力画像は初期状態で黒色となるので、入力画像の画素値が閾値以
Sublime Text は、私のお気に入りのプログラミング用テキストエディタです。 Sublime Textで気に入っている特徴の1つは、あいまい検索アルゴリズムです。ファイルや関数の検索が超高速なのです。これまで多くの人が、インターネット上で、この仕組みについて質問していましたが、満足の行く回答はありませんでした。そこで、私が自らこれを解明することにしました。 全部読むのが面倒な方へ 本文を読まずに最終結果だけ知りたいですか? 了解! 私は、あなたを責めたりしませんよ。 インタラクティブなデモ: こちらをクリック ソースコード: C++ 、 JavaScript Sublime Textの仕組み Sublime Textのあいまい一致とは何でしょうか。そして、なぜそれはそんなに賢いのでしょうか。聞いてくれてうれしいです。 Sublime Textには、2つの非常に便利なナビゲーション関
ソフトウェア開発の原点は可能性の追求であり、不可能を可能にすることです。ひとたび ソフトウェア が開発されると、エンジニアは次に 程度 という課題に向き合うことになります。企業向けのソフトウェアであれば、「速度はどれくらいか」と頻繁に問われ、「信頼性はどの程度か」という点が重視されます。 ソフトウェアのパフォーマンスに関する質問に答え、さらには正しい内容を語る上で欠かせないのが統計学です。 とはいえ、統計学について多くを語れる開発者はそうはいません。まさに数学と同じで、一般的なプロジェクトで統計学が話題に上ることなどないのです。では、新規にコーディングをしたり、古いコードのメンテナンスをしたりする合間に、手が空くのは誰でしょうか? エンジニアの方は、ぜひ時間を作ってください。近頃は、15分でも貴重な時間と言えるでしょうから、 こちらの記事をブックマークに追加 しておいてもいいでしょう。とに
モノクロの写真をカラーにしたい! 今すぐ! そんな方にはカリフォルニア大学バークレー校の開発したコンピュータ・ビジョン・システム試すといいかもしれません。このシステムは、モノクロの画像に、人間にとっても自然な色合いをつけることができるんです。もっと正確に言えば、必ずしも「正しい色」を付けるわけではなく「あり得そうに見える色」をつけることができます。 このシステムでは、 「convolutional neural network」(畳み込みニューラルネットワーク)を用い、100万以上のカラー写真から学ぶことで色付けを可能にしています。カラー写真のどのような部分にどう色がついているのかを、データセットから学習するのです。そして、新たなモノクロ写真を見たときに、それらの部分部分を認識し、過去に見た写真を元にそこにどんな色が来るのかを判断します。 システムは完全に自動化されており、ユーザーはモノク
前回の続き。 ディープラーニングのフレームワークであるTensorFlowを使用して株価を予想するぞ~、というお話です。ちなみに前回は完全に失敗でした。 前回のコメントで、tawagoさんから「Googleが同じようなことしている」という情報をいただいたので、そちらをコピ・・・インスパイアしてみました。 ##前回との相違点 前回は、「数日分の日経平均を使用して、次の日の日経平均が上がるか、下がるか、変わらないか(3択)を予想する」ものでした。 Googleのデモでは、「数日分の世界中の株価指数(ダウ、日経平均、FTSE100、DAXなど)を使用して、次の日のS&Pが上がるか下がるか(2択)を予想する」という内容でした。 ということで、下記が前回からの主な変更点となります。 「上がるか」「下がるか」の2択 日経平均だけでなく、他国の株価指数も使用 隠れ層x2、ユニット数は50,25 予想する
プログラムで使うことの多い「乱数」。ゲーム開発やビジュアルアート、ウェブサイトのアニメーションにおいて乱数は非常に重要で、さまざまな用途で利用されています。プログラムで一般に乱数と聞くと、すべての数値が同じ頻度(分布)で出現する「一様乱数」と呼ばれる乱数をイメージする方が多いと思います。 多くの場合はこの「一様乱数」で取得した乱数を用いれば十分でしょう。しかし、場合によっては「一様乱数」ではなく、偏りのある乱数を用いることでコンテンツの見た目や現象の「自然さ」を演出することが可能です。 実は「一様乱数」に一手間加えることで、乱数の分布の偏りを制御できます。今回は乱数を使用して好みの分布を得るためのパターンをいくつか紹介します。 乱数分布のシミュレーションデモ (HTML5製) 次のデモはリアルタイムで乱数の出現頻度を計算し、グラフに可視化するコンテンツです。画面下のプルダウンで乱数の種類を
この記事について Pythonでファイナンス関係の情報を探していたところ見つけた"Quantopian"が面白そうだったので試してみます。 Quantopian Quantopianとは クラウドベースのアルゴリズムトレーディングプラットフォームです。ユーザはブラウザで専用のIDE(開発環境)を使ってPythonライクなコードでトレーディングアルゴリズムを作成し、バックテストを行うことができます。Interactive Brokers証券に口座がある場合は、接続してリアルトレードを行うこともできるようです。 何がトレードできる? 2002年以降の米国株/ETFのデータを分足ベースで保持しているようです。 はじめよう アカウント登録 サイトにアクセスします。真っ赤です。右上のSign Upからメールアドレスで登録します。 ログイン直後 上部にメニューが並んでいます。 Capital -> L
金曜日の「プログラマのための数学勉強会@福岡」で乱数の話をしてきました。 プログラマのための数学勉強会@福岡 #3 - connpass で、乱数の生成だとか、クイックソートや素数判定などの乱択アルゴリズムの話とかをしました。 乱数タノシイヨ 乱数のたのしい話 from なおき きしだ その中で、遺伝アルゴリズムで巡回セールスマン問題(TSP)を解くというのをやってみました。遺伝アルゴリズム、すいぶん昔から名前は知ってて、どういうアルゴリズムかも知ってて、実装もそんな難しくないと知りつつ、書く機会がありませんでした。なので、この機会に書いてみようと。 とりあえず最初に完全にランダムでTSPを解いてみます。 TSP with random ぐちゃぐちゃですね。 下部のグラフはその時点での最短距離。最初に距離が短いものをみつけていくけどだんだんみつかりにくくなる、という感じになっています。 1
gistfile1.md 目的 サーバー側でガチャのアイテムを選択すると確率操作している疑いがかかるので、事前に提示した確率から変更が出来ず疑いが掛からないような方式を提案する サーバー側でもクライアント側でも不正が出来ないことが要件として求められる 簡便なアルゴリズムで一般市民にも理解しやすく、また、解析によるアルゴリズムの把握が容易であることが望ましい かんがえかた これ相当のことを、サーバーとクライアントでやればいい。 ディーラーはカードを伏せた状態でプレイヤーに配る。プレイヤーは自分の責任でカードを選ぶ。選んだ後で選択していないものも含めて、全てのカードが公開される。 このような機能を実現するためには、次のような性質を持つアルゴリズムがあればいい。 サーバー側では中身が確定していて、宣言したカードの中身を後から変更することが出来ない(不正ができない) クライアントからはカードの中身
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Qiita の 「見逃せない投稿」 を独自に評価してランキングするサービス Qaleidospace を作りました。 本投稿では、そのようなサービスを作ろうと思った理由、投稿を評価するアルゴリズム、システム構成について書きます。 余談ですが、今なら Yearly Ranking がほぼ 2015 年の投稿ランキングとなっており、眺めていて楽しいです。 TL;DR Qiita の「見逃せない投稿」をランキングするサービス Qaleidospace を作った。 適切な評価システムがあれば、書き手も読み手もみんな幸せになれるはず。 ストック数
Photo by Oferico 皆さんはアルゴリズムやデータ構造について勉強したことはありますか?そして、基本的なアルゴリズムについて、どのようなものがあって、どのようなときに使うとよいかといったことを説明することができますか? 仕事をしていると、プログラミング言語等の勉強や業務に忙しくて、正直アルゴリズムどころではないという場合がほとんどでしょう。しかし、いつか勉強しようと思っていたけど、基本的なアルゴリズムにどんなものがあるのかなんて今更聞けないな……ということもあるかと思います。 今回はそんな方に向けて、基本的なアルゴリズムの一部の概要に加え、アルゴリズムの勉強に役立つサイト、書籍をご紹介したいと思います。 ■アルゴリズムを学ぶ意味 例えば、ソート等については、通常はすでにソート関数があるので、自分で作らなくても済む=アルゴリズムも勉強しなくていいと思ってしまうかもしれません。しか
この投稿では、以前に TinyKeepDev が こちら で述べたランダムなダンジョンを生成する技法について説明しようと思います。元の投稿に比べて、もう少し具体的に話を進めるつもりです。まずは、以下に示したアルゴリズムの一般的な動作をご覧ください。 部屋の生成 はじめに、幅と高さを持つ部屋を円の中にランダムに配置しましょう。TKdevのアルゴリズムは、各部屋のサイズを生成するのに正規分布を用いています。これは一般的にとてもいいアイデアです。なぜかと言うと、これによってより多くのパラメータを扱うことができるようになるからです。幅/高さの平均と標準偏差間の異なる比率を選ぶと、通常は見た目の違うダンジョンとなります。 ここで実行すべき関数は getRandomPointInCircle です。 function getRandomPointInCircle(radius) local t = 2
こんにちは。検索編成部&研究開発チームの原島です。 クックパッドのレシピには、内部で、様々な情報が付与されています。例えば、こちらの「母直伝♪うちの茹でない塩豚」というレシピには「肉料理」という情報が付与されています。これらの情報は、クックパッドの様々なプロダクトで利用されています。 レシピに情報を付与する方法は沢山ありますが、その一つに機械学習があります。クックパッドでは、レシピが肉料理か否か、魚料理か否か、...という分類を行うことで、「肉料理」や「魚料理」などの情報をレシピに付与しています。 今日は、分類をどのように実現しているか、その裏側を紹介します。 ■ 実装フェーズ まず、分類器を実装する際に気をつけたことを紹介します。 モデルを決定する 分類を行うには、そのための機械学習のモデルを決定する必要があります。クックパッドでは、十分な精度が出るだけでなく、リファレンスが多いという点
base_domain = MODE.get('production') url_base = 'https://{}/v1/candles?'.format(base_domain) url = url_base + 'instrument={}&'.format(currency_pair.name) + \ 'count=5000&' +\ 'candleFormat=midpoint&' +\ 'granularity={}&'.format(granularity.name) +\ 'dailyAlignment=0&' +\ 'alignmentTimezone=Asia%2FTokyo&' +\ 'start={}T00%3A00%3A00Z'.format(start) response = requests_api(url) def requests_api(url, p
最近、「絶対に勝てない三目並べ」のゲームを作ったのですが、非常にささやかながらも楽しいプロジェクトで、いろいろ学ぶこともできました。ゲームの全体像に興味がある方は、 こちらでゲームを試してみてください 。 無敵のゲームにするには、コンピュータ側が全ての手を計算し、何らかの基準を用いて最善の手を決められるようなアルゴリズムを作る必要があります。多岐にわたって調べた結果、このプロジェクトにはどうやら ミニマックス アルゴリズムが適当そうだということが分かりました。 このアルゴリズムを根本的な意味で真に理解し、自分のゲームに実装できるようになるまでにはある程度の時間が必要でした。多くのコードサンプルと説明に目を通しましたが、私が能なしだからか、どれを見てもプロセスの内実を十分に理解することはできなかったのです。この投稿が、ミニマックスアルゴリズムに関する皆さんの理解に少しでもお役に立てたらと思い
Deep Neural Networkを使って画像を好きな画風に変換できるプログラムをChainerで実装し、公開しました。 https://github.com/mattya/chainer-gogh こんにちは、PFNリサーチャーの松元です。ブログの1行目はbotに持って行かれやすいので、3行目で挨拶してみました。 今回実装したのは”A Neural Algorithm of Artistic Style”(元論文)というアルゴリズムです。生成される画像の美しさと、画像認識のタスクで予め訓練したニューラルネットをそのまま流用できるというお手軽さから、世界中で話題になっています。このアルゴリズムの仕組みなどを説明したいと思います。 概要 2枚の画像を入力します。片方を「コンテンツ画像」、もう片方を「スタイル画像」としましょう。 このプログラムは、コンテンツ画像に書かれた物体の配置をそのま
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く