タグ

ブックマーク / note.com/npaka (56)

  • GPT-4o の概要|npaka

    以下の記事が面白かったので、簡単にまとめました。 ・Hello GPT-4o 1. GPT-4o「GPT-4o」 (「omni」の「o」) は、人間とコンピュータのより自然な対話に向けた一歩です。テキスト、音声、画像のあらゆる組み合わせを入力として受け入れ、テキスト、音声、画像の出力のあらゆる組み合わせを生成します。 音声入力にはわずか232ミリ秒 (平均320ミリ秒) で応答できます。これは、人間の会話における応答時間とほぼ同じです。英語のテキストおよびコードでは「GPT-4 Turbo」のパフォーマンスに匹敵し、英語以外の言語のテキストでは大幅に改善されており、APIでははるかに高速で50%安価です。「GPT-4o」は、既存のモデルと比較して、特に視覚と音声の理解に優れています。 2. モデルの機能「GPT-4o」以前は、音声モードを使用して、平均2.8秒 (GPT-3.5) および5

    GPT-4o の概要|npaka
  • Dify で RAG を試す|npaka

    1. RAG「RAG」(Retrieval Augmented Generation) は、最新の外部知識の習得とハルシネーションの軽減という、LLMの2つの主要課題に対処するためのフレームワークです。開発者はこの技術を利用して、AI搭載のカスタマーボット、企業知識ベース、AI検索エンジンなどをコスト効率よく構築できます。これらのシステムは、自然言語入力を通じて、さまざまな形態の組織化された知識と相互作用します。 下図では、ユーザーが「アメリカの大統領は誰ですか?」と尋ねると、システムは回答のためにLLMに質問を直接渡しません。代わりに、ユーザーの質問について、知識ベース (Wikipediaなど) でベクトル検索を実施します。意味的な類似性マッチングを通じて関連するコンテンツを見つけ (たとえば、「バイデンは現在の第46代アメリカ合衆国大統領です...」)、LLMに発見した知識とともにユ

    Dify で RAG を試す|npaka
  • Dify の ワークフロー の概要|npaka

    以下の記事が面白かったので、簡単にまとめました。 ・Workflow - Dify 1. ワークフロー1-1. ワークフロー「ワークフロー」は、複雑なタスクを小さな「ノード」に分割することで、LLMアプリケーションのモデル推論への依存を減らし、システムの説明可能性、安定性、耐障害性を向上させます。 「ワークフロー」の種類は、次のとおりです。 ・Chatflow :  顧客サービス、セマンティック検索など、応答作成に複数ステップのロジックを必要とする会話シナリオ用 ・Workflow : 高品質な翻訳、データ分析、コンテンツ作成、電子メールの自動化など、自動化・バッチ処理シナリオ用 1-2. Chatflow自然言語入力におけるユーザー意図認識の複雑さに対処するため、「質問分類」「質問書き換え」「サブ質問分割」などの問題理解ノードを提供します。さらに、LLMに外部環境との対話機能、すなわち「

    Dify の ワークフロー の概要|npaka
  • GaLore - 家庭用ハードウェアでの大規模モデルの学習|npaka

    以下の記事が面白かったので、簡単にまとめました。 ・GaLore: Advancing Large Model Training on Consumer-grade Hardware 1. GaLore「GaLore」は、「NVIDIA RTX 4090」などの家庭用GPU上で、Llamaなどの最大7Bパラメータを持つモデルの学習を容易にします。これは、学習プロセス中のオプティマイザの状態と勾配に従来関連付けられていたメモリ要件を大幅に削減することによって実現されます。 2. オプティマイザ状態でのメモリ効率オプティマイザ状態は、特にAdamのような適応最適化アルゴリズムでは、モデルの学習中のメモリフットプリントの重要な部分を占めます。「GaLore」は、オプティマイザによって処理される前に、勾配を低次元の部分空間に投影することでこの問題に対処します。これにより、これらの状態を保存するため

    GaLore - 家庭用ハードウェアでの大規模モデルの学習|npaka
  • Google Colab で Claude 3 の Vision を試す|npaka

    Google Colab」で「Claude 3」の「Vision」を試したので、まとめました。 前回 1. Vision「Claude 3」には、画像を理解して分析できる「Vision」機能が搭載されています。テキストと画像の両方を入力して会話することができます。 2. Visionの入力画像2-1. 画像サイズ画像の長辺が 1568ピクセル を超える場合、または画像が約 1600トークン を超える場合、サイズ制限内になるまでアスペクト比を維持しながら縮小されます。入力画像が大きすぎてサイズ変更する場合、time-to-first-tokenのレイテンシが増加します。特定のエッジに 200ピクセル未満の非常に小さな画像があると、パフォーマンスが低下する可能性があります。 以下は、一般的なアスペクト比に合わせてサイズ変更されない、APIで受け入れられる最大画像サイズです。 ・1:1 : 1

    Google Colab で Claude 3 の Vision を試す|npaka
  • ロングコンテキストLLMに対応したRAGの新アーキテクチャ|npaka

    以下の記事が面白かったので、簡単にまとめました。 ・Towards Long Context RAG - LlamaIndex 1. はじめにGoogleは、1Mコンテキストウィンドウを持つ「Gemini 1.5 Pro」をリリースしました。初期ユーザーは、数十もの研究論文や財務報告書を一度に入力した結果を共有しており、膨大な情報を理解する能力という点で印象的な結果を報告しています。 当然のことながら、ここで疑問が生じます。「RAG」は死んだのでしょうか?そう考える人もいますが、そうではない人もいます。 幸運にも「Gemini 1.5 Pro」の機能をプレビューすることができ、それを試してみることで、ロングコンテキストLLMを適切に使用するには、RAGがどのように進化するのかについてのまとめました。 2. Gemini 1.5 Pro の 初期観察「Gemini」の結果は印象的で、テクニカ

    ロングコンテキストLLMに対応したRAGの新アーキテクチャ|npaka
  • LangChain v0.1 クイックスタートガイド - Python版|npaka

    Python版の「LangChain」のクイックスタートガイドをまとめました。 ・langchain 0.1.7 1. LangChain「LangChain」は、「大規模言語モデル」 (LLM : Large language models) と連携するアプリの開発を支援するライブラリです。 「LLM」という革新的テクノロジーによって、開発者は今まで不可能だったことが可能になりました。しかし、「LLM」を単独で使用するだけでは、真に強力なアプリケーションを作成するのに不十分です。真の力は、それを他の 計算 や 知識 と組み合わせた時にもたらされます。「LangChain」は、そのようなアプリケーションの開発をサポートします。 主な用途は、次の3つになります。 ・文書に関する質問応答 ・チャットボット ・エージェント v0.1 ではlangchainパッケージが次の3つのパッケージに分割さ

    LangChain v0.1 クイックスタートガイド - Python版|npaka
  • Google Colab で LLaMA-Factory を試す|npaka

    Google Colab」で「LLaMA-Factory」を試したので、まとめました。 【注意】Google Colab Pro/Pro+のA100で動作確認しています。 1. LLaMA-Factory「LLaMA-Factory」は、WebUIによる簡単操作でLLMを学習できるLLMファインチューニングフレームワークです。 サポートするモデルは、次のとおりです。 サポートする学習法は、次のとおりです。 サポートするデータセットは、次のとおりです。 事前学習データセット ・Wiki Demo (en) ・RefinedWeb (en) ・RedPajama V2 (en) ・Wikipedia (en) ・Wikipedia (zh) ・Pile (en) ・SkyPile (zh) ・The Stack (en) ・StarCoder (en) SFTデータセット ・Stanford

    Google Colab で LLaMA-Factory を試す|npaka
  • Google Colab で Gemini API を試す|npaka

    Google Colab」で「Gemini API」を試したので、まとめました。 1. Gemini API「Gemini API」は、「Google DeepMind」が開発したマルチモーダル大規模言語モデル「Gemini」を利用するためのAPIです。 3. Gemini API の準備Colabでの「Gemini API」の準備手順は、次のとおりです。 (1) パッケージのインストール。 # パッケージのインストール !pip install -q -U google-generativeai(2) 「Google AI Studio」からAPIキーを取得し、Colabのシークレットマネージャーに登録。 キーは「GOOGLE_API_KEY」とします。 import google.generativeai as genai from google.colab import userd

    Google Colab で Gemini API を試す|npaka
  • LangChain への OpenAIのRAG戦略の適用|npaka

    以下の記事が面白かったので、かるくまとめました。 ・Applying OpenAI's RAG Strategies 1. はじめに「Open AI」はデモデーで一連のRAG実験を報告しました。評価指標はアプリケーションによって異なりますが、何が機能し、何が機能しなかったかを確認するのは興味深いことです。以下では、各手法を説明し、それぞれを自分で実装する方法を示します。アプリケーションでのこれらの方法を理解する能力は非常に重要です。問題が異なれば異なる検索手法が必要となるため、「万能の」解決策は存在しません。 2. RAG スタックにどのように適合するかまず、各手法をいくつかの「RAGカテゴリ」に分類します。以下は、カテゴリ内の各RAG実験を示し、RAGスタックに配置する図です。 3. ベースライン距離ベースのベクトルデータベース検索は、クエリを高次元空間に埋め込み(表現)し、「距離」に基

    LangChain への OpenAIのRAG戦略の適用|npaka
  • OpenAI の Assistant Playground の Code Interpreter を試す|npaka

    OpenAI」の 「Assistant Playground」の「Code Interpreter」を試したので、まとめました。 前回 1. Code Interpreter「Code Interpreter」は、アシスタントがサンドボックス実行環境でPythonコードを作成および実行できるツールです。さまざまなデータと形式を含むファイルを処理し、データとグラフの画像を含むファイルを生成できます。 2. アシスタントの作成アシスタントの作成手順は、次のとおりです。 (1)  「Playground」を開き、左端の「Playgroundアイコン」とタイトル横の「Assistants」を選択し、「+Create」を押す。 (2) WebUIで以下のように設定して、SAVEボタンを押す。 ・Name : 数学の家庭教師ボット ・Instructions : あなたは数学の個人家庭教師です。数学

    OpenAI の Assistant Playground の Code Interpreter を試す|npaka
  • Google Colab で OpenAI API の Code Interpreter を試す|npaka

    Google Colab」で「OpenAI API」の「Code Interpreter」を試したので、まとめました。 前回 1. Code Interpreter「Assistant API」は、さまざまなタスクを実行できる強力な「AIアシスタント」を作成するためのAPIです。 「Assistant API」は現在、次の3つのツールをサポートしています。 ・Code Interpreter : Pythonコードを作成して実行 ・Retrieval : モデル外部からの知識を取得 ・Function Calling : 関数のレスポンスを取得 今回は、「Code Interpreter」を使います。「Code Interpreter」は、「Assistant API」がサンドボックス実行環境でPythonコードを作成して実行できるツールです。さまざまなデータと形式を含むファイルを処理し

    Google Colab で OpenAI API の Code Interpreter を試す|npaka
  • Google Colab で OpenAI API の Text-to-Speech を試す|npaka

    Google Colab」で「OpenAI API」の「Text-to-Speech」を試したので、まとめました。 前回 1. Text-to-Speech「Text-to-Speech」、テキストの読み上げを行うAPIです。6つの内蔵ボイスが付属しており、次の目的で使用できます。 ・書かれたブログ投稿のナレーション ・複数言語の音声を生成 ・ストリーミングを使用したリアルタイムオーディオ出力 2. セットアップColabでのセットアップ手順は、次のとおりです。 (1) パッケージのインストール。 # パッケージのインストール !pip install openai(2) 環境変数の準備。 以下のコードの <OpenAI_APIキー> にはOpenAIのサイトで取得できるAPIキーを指定します。(有料) import os os.environ["OPENAI_API_KEY"] = "

    Google Colab で OpenAI API の Text-to-Speech を試す|npaka
  • OpenAI API で提供されている モデル まとめ|npaka

    OpenAI API」で提供されている「モデル」をまとめました。 ・Model - OpenAI API 1. OpenAI API で提供されている モデル「OpenAI API」で提供されている「モデル」は、次のとおりです。 ・GPT-4 / GPT-4 Turbo : GPT-3.5を改善し、自然言語やコードを理解し、生成できるモデル ・GPT-3.5 : GPT-3を改善し、自然言語やコードを理解し、生成できるモデル ・DALL-E : 自然言語から画像を生成および編集できるモデル ・TTS : テキストを自然な音声に変換できるモデル ・Whisper : 音声をテキストに変換できるモデル ・Embedding : テキストをベクトル表現に変換できるモデル ・Moderation : テキストが機密または安全かどうかを検出できるモデル ・GPT base : ファインチューニング

    OpenAI API で提供されている モデル まとめ|npaka
  • Google Colab で OpenAI API の Retrieval を試す|npaka

    Google Colab」で「OpenAI API」の「Retrieval」を試したので、まとめました。 前回 1. Retrieval「Assistant API」は、さまざまなタスクを実行できる強力な「AIアシスタント」を作成するためのAPIです。 「Assistant API」は現在、次の3つのツールをサポートしています。 ・Code Interpreter : Pythonコードを作成して実行 ・Retrieval : モデル外部からの知識を取得 ・Function Calling : 関数のレスポンスを取得 今回は、「Retrieval」を使います。「Retrieval」は、製品情報やユーザーから提供されたドキュメントなど、モデル外部からの知識を取得して、アシスタントを強化します。ファイルをアップロードして「アシスタント」に渡すと、自動的にドキュメントをチャンク化し、埋め込みの

    Google Colab で OpenAI API の Retrieval を試す|npaka
  • OpenAI DevDay で発表された新モデルと新開発ツール まとめ|npaka

    以下の記事が面白かったので、かるくまとめました。 ・New models and developer products announced at DevDay 1. GPT-4 Turbo「GPT-4 Turbo」は、「GPT-4」より高性能です。2023年4月までの知識と128kのコンテキストウィンドウを持ちます。さらに、「GPT-4」と比較して入力は1/3、出力は1/2の安い価格で提供します。 開発者はモデルID「gpt-4-1106-preview」で試すことができます。今後数週間以内に、安定した実稼働モデルをリリースする予定です。 1-1. Function Calling の更新「Function Calling」に、単一メッセージから複数のFunction (「車の窓を開けてエアコンをオフにする」など) を呼び出す機能などが追加されました。精度も向上しています。 1-2. 構造

    OpenAI DevDay で発表された新モデルと新開発ツール まとめ|npaka
  • LangChain クイックスタートガイド - Python版|npaka

    Python版の「LangChain」のクイックスタートガイドをまとめました。 ・LangChain v0.0.329 (2023/11/3) 1. LangChain「LangChain」は、「大規模言語モデル」 (LLM : Large language models) と連携するアプリの開発を支援するライブラリです。 「LLM」という革新的テクノロジーによって、開発者は今まで不可能だったことが可能になりました。しかし、「LLM」を単独で使用するだけでは、真に強力なアプリケーションを作成するのに不十分です。真の力は、それを他の 計算 や 知識 と組み合わせた時にもたらされます。「LangChain」は、そのようなアプリケーションの開発をサポートします。 主な用途は、次の3つになります。 ・文書に関する質問応答 ・チャットボット ・エージェント 2. LangChain のモジュール「L

    LangChain クイックスタートガイド - Python版|npaka
  • 大規模モデルを単一GPUで効率的に学習する方法|npaka

    以下の記事が面白かったので、かるくまとめました。 ・Methods and tools for efficient training on a single GPU 1. LLMを単一GPUで効率的に学習する方法大規模モデルの学習では、次の2つを考慮する必要があります。 ・スループット・学習時間 ・モデルのパフォーマンス 「スループット」 (サンプル / 秒) を最大化すると、学習コストの削減につながります。これは通常、GPUメモリを限界まで利用することで実現されます。必要なバッチサイズがメモリオーバーする場合は、「Gradient Accumulation」などの「メモリの最適化」が必要になります。 ただし、「推奨バッチサイズ」がメモリに収まる場合は、学習が遅くなる可能性があるため、「メモリの最適化」を適用する必要はありません。どのバッチサイズが最良の結果をもたらすかを決定し、それに応じ

    大規模モデルを単一GPUで効率的に学習する方法|npaka
  • Google Colab で Xwin-LM-70B-V0.1-GPTQ を試す。|npaka

    Google Colab」で「Xwin-LM-70B-V0.1-GPTQ」を試したので、まとめました。 【注意】Google Colab Pro/Pro+のA100で70Bを動作確認しています。 1. Xwin-LM-70B-V0.1-GPTQ「Xwin-LM」は、ベンチマーク「AlpacaEval」で「GPT-4」を追い抜き1位を獲得したモデルです。 今回は、「TheBloke/Xwin-LM-70B-V0.1-GPTQ」を利用します。 2. Colabでの実行Colabでの実行手順は、次のとおりです。 (1) Colabのノートブックを開き、メニュー「編集 → ノートブックの設定」で「GPU」の「A100」を選択。 (2) パッケージのインストール。 GPTQを利用するため、「auto-gptq 」もインストールしています。 # パッケージのインストール !pip install t

    Google Colab で Xwin-LM-70B-V0.1-GPTQ を試す。|npaka
  • GitHub Copilot Chat の使い方|npaka

    2. GitHub Copilot Chatの開始「GitHub Copilot Chat」の開始手順は、次のとおりです。 (1) 「GitHub Copilot」のセットアップ。 「GitHub Copilot」のセットアップが必要です。 (2) VSCode拡張機能で「GitHub Copilot Chat」をインストール。 (3) チャットタブが追加されるので、クリック。 (4) チャットのメッセージボックスに質問を入力。 コードを開いて「このコードを説明して」と頼むと、次のように説明してくれました。 エディタでコードが選択されている場合、Copilot は選択した範囲に質問を絞り込みます。 3. スラッシュコマンド「Copilot」がより適切な回答を提供できるように、「スラッシュコマンド」を使用して質問のトピックを選択できます。 ・/explain : 選択したコードがどのように

    GitHub Copilot Chat の使い方|npaka