エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
大規模モデルを単一GPUで効率的に学習する方法|npaka
以下の記事が面白かったので、かるくまとめました。 ・Methods and tools for efficient training on a ... 以下の記事が面白かったので、かるくまとめました。 ・Methods and tools for efficient training on a single GPU 1. LLMを単一GPUで効率的に学習する方法大規模モデルの学習では、次の2つを考慮する必要があります。 ・スループット・学習時間 ・モデルのパフォーマンス 「スループット」 (サンプル / 秒) を最大化すると、学習コストの削減につながります。これは通常、GPUメモリを限界まで利用することで実現されます。必要なバッチサイズがメモリオーバーする場合は、「Gradient Accumulation」などの「メモリの最適化」が必要になります。 ただし、「推奨バッチサイズ」がメモリに収まる場合は、学習が遅くなる可能性があるため、「メモリの最適化」を適用する必要はありません。どのバッチサイズが最良の結果をもたらすかを決定し、それに応じ
2023/11/06 リンク