タグ

programmingとalgorithmに関するdragonetのブックマーク (13)

  • 「ガベージコレクションのアルゴリズムと実装」という本を書きました。

    gcbook, gcai, GCGCLoverのみなさん、お待たせしました。「ガベージコレクションのアルゴリズムと実装」の情報公開です。 書名:ガベージコレクションのアルゴリズムと実装 著者:中村 成洋/相川 光 監修:竹内 郁雄 ページ数:472ページ 体価格:3,200円 発売開始日:2010年3月17日(水) ※地域・書店によって遅れることがあります ISBN:978-4-7980-2562-9 C3055 読み所 書は次の2つのテーマを扱います。 1.GCのアルゴリズム(アルゴリズム編) 2.GCの実装(実装編) アルゴリズム編では、これまでに考案されてきた数多くのGCアルゴリズムの中 から、重要なものを厳選して紹介します。伝統的かつ基的なものから、やや 高度なアルゴリズムを選定しています。GC独特の考え方や各アルゴリズムの特 性などを理解していただくのがアルゴリズム編の最大

  • アルゴリズムの紹介

    ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意していま

  • SQLで木と階層構造のデータを扱う――入れ子集合モデル

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。

  • ウノウラボ Unoh Labs: RDBで階層構造を扱うには?

    yukiです。ダイエットを始めて3kg減ったと思ったら、風邪を引いて見事に1kg増量。 運動しないと駄目ですね。あと残り20kg、道のりは遠いです。 さて今回は、「RDBで階層構造を扱うには?」です。 あるサイトを構築中に階層構造をもったカテゴリ構造にすることになり、どのようにDBで扱うか悩みました。 DBMySQLを採用していたので、この時点でぱっと頭に浮かんだ選択肢は以下のようなものでした。 XML-DBを利用する 親カテゴリレコードのプライマリIDを子カテゴリレコードに持たせる 親を含めた『絶対パス』を名称として扱い、取り出した後にパース ファイルシステムに同様のディレクトリ構造を作り、毎回パースする (1)のXMLDBはオープンソースのeXistやXindice、Yggdrasillなど様々な選択肢がありましたが、カテゴリのみの利用な割にメンテナンスコストが高すぎるので見送りま

  • algorithm - correction - 最近点検索 : 404 Blog Not Found

    2009年04月29日07:45 カテゴリMathアルゴリズム百選 algorithm - correction - 最近点検索 これ、「素直な解答」の方が間違っている。 404 Blog Not Found:algorithm - 最近点検索 ぬじゃらだーさんのコメント このアルゴリズムって点が原点から等距離に分布している場合はまったく働かないですよね。 その通り。その一方で、「近い順にソート」は合っている。しかしこれだとO(n log n)。 TSさんのコメント もとの最近点探索の問題を解くには、点集合Pのボロノイ図データを作っておいて問い合わせに答えるのが正攻法ではないでしょうか これだと確かに高速。点がすべて格子点上にある場合(たとえばビットマップ)、ボロノイ図があらかじめ用意してある場合はO(1)で判定できる。たとえば各格子点にあらかじめどの点が一番近いかを記録しておき、それを読

    algorithm - correction - 最近点検索 : 404 Blog Not Found
  • 北海道を落とすとどう跳ねるのか? - てっく煮ブログ

    北海道を落としたらどうなるんだろう? 少し気になったので調べてみました。START をクリックすると確認できます。北海道以外も確認できるので、しばらく待って気になる都道府県が登場するのを待つとよいかもしれません。最後の鹿児島と沖縄は圧巻です。よつ葉バター1缶ジャンル: 品・スイーツ > チーズ・乳製品 > バター > その他ショップ: 北海道お土産探検隊価格: 593円

  • 北海道を落とすとどう跳ねるのか?の裏側 - てっく煮ブログ

    asおかげさまで大好評の 北海道を落とすとどう跳ねるのか? ですが、どのように作ったか、製作過程を紹介することにします。1. 地図の素材を取ってくるまずは地図の素材が必要です。以下のサイトから拝借しました。白地図、世界地図、日地図が無料pdf や eps 形式の地図データを無料で配布してくれているありがたいサイトです。2. 都道府県ごとに分割する上記の素材は県境もベクター形式で提供されていて大変ありがたかったのですが、島がどの都道府県に属しているかの情報がありませんでした。そこで、Google Maps と見比べながら、島を都道府県ごとに分類していきました。無事、全ての島を分類し終わって、こんな感じになりました。とても地味な作業でした…。3. 都道府県ごとに SVG で出力する次に、Illustrator 内で分類したデータをプログラムで扱える形式にしなければなりません。ここでは XML

  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • アルゴリズム - 同じ文字列のn回繰り返しをlog n回で作る方法 : 404 Blog Not Found

    2009年01月31日01:00 カテゴリLightweight LanguagesMath アルゴリズム - 同じ文字列のn回繰り返しをlog n回で作る方法 これなのですが.... 同じ文字列のn回繰り返しを作る最速の方法を探求してみた - muddy brown thang ちょっとした事情により、ある文字列のn回繰り返しを作る関数 (PHPでいうところのarray_repeat(), Perlで言うところの「"..." x n」、RubyPythonで言うところの「"..." * n」) を高速に実装しなければならない状況に遭遇したのでベンチマークをとってみたところ、その結果がとても新鮮で驚いたので、これを共有しつつもダメ出ししてもらえないかなーと思って晒してみることに。 なぜかもっとシンプルな奴がなかったので。 以下、比較。初期値はIEにあわせてあります。Firefox/Saf

    アルゴリズム - 同じ文字列のn回繰り返しをlog n回で作る方法 : 404 Blog Not Found
  • 第10回 麻雀の役を判定する:ITpro

    図1に示す(1)から(3)までの麻雀(マージャン)の手牌があります。「あがり牌」はすべて山からツモったものとし,リーチはかけていません。またドラやハイテイ*1なども関係ないものとします。これらの役を判定して,親の場合の点数を計算するプログラムを作ってください。 「ややこしや~ややこしや~」というのは野村萬斎ですが,思わずそううなってしまうことがプログラミングをしているとよくあります。今回の麻雀の役判定は,考えれば考えていくほどややこしく,そうしたものの代表と言えるでしょう。排他処理や優先順位が複雑にからんでいて一筋縄ではいきません。 今回はややこしい組み合わせを解決する方法を考えてみます。麻雀になじみのない方も,ちょっとしたパズル気分で試してみてください。 麻雀の役を考える 麻雀を知らない方のためにルールをおおざっぱに説明しておきましょう*2。麻雀の牌には,大きく分けて「萬子(マンズ)」「

    第10回 麻雀の役を判定する:ITpro
  • JavaScriptで配列をシャッフル

    配列をシャッフル、つまりランダムに要素の位置を入れ替えるというのを、sortメソッドを使ってやってみたのだけど、明らかにダメダメなものになってしまった。その後、あーでもないこーでもないと考えたのだけど、算数が得意すぎて頭が痛くなった。ということを某所でぼやいたらはてのくんがコードを見つけてくれた。どうやらFisher-Yatesという有名なアルゴリズムでやると良いらしい。 最初に書いたコードは、 var a = new Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9); a.sort( function (a, b) { return Math.ceil(Math.random() * 3) - 2; } ); というもの。sortメソッドは、パラメータに与えられた関数が負の値・0・正の値を返すことによって要素の順序を決定するので、その関数がランダムに値を返せばランダ

    JavaScriptで配列をシャッフル
  • 再帰再考 : 404 Blog Not Found

    2006年07月23日13:00 カテゴリLightweight Languages 再帰再考 今やこれは逆ではないか。 再帰的アルゴリズム まずは,非再帰プログラムで問題を考えてみる。 難しいと判断した場合,再帰プログラムで考えてみる。 むしろ私はこうしてきた。 まずは再帰で実装する。 速度と資源の制約があるとき、非再帰で実装しなおす 一番の理由は、今やプログラミングそのもののコストの方がプログラムを実行するコストよりも大きいからだ。早くプログラムを書く要請の方が速いプログラムを書く要請より強いからだ。 次の理由は、再帰は遅いとは限らないからだ。特にLisp系では、末尾再帰(tail recursion)は重くない。これはもうshiroさんが力説しているのでそちらを参照して欲しい。フィボナッチ数列を解くプログラムはとにかく、階乗を解くプログラムぐらいだとわざわざ再帰しないようにするご利益

    再帰再考 : 404 Blog Not Found
  • 再帰的アルゴリズム

    このようにして3!が計算されます。 このような定義の仕方を再帰的定義と言います。 この階乗関数を Basic プログラムとして実現してみると,(Tiny Basic には階乗関数 Factorial が内蔵されていますから,実際にこのようなプログラムを書く必要はありませんが。) Function Kaijyou(n) If n = 0 then Kaijyou = 1 Else Kaijyou = Kaijyou(n-1)*n End if End Function となります。しかし,実は階乗関数は,再帰を使わなくても,次のように実現することが出来ます。 Function Kaijyou(n) F = 1 For i = 1 to n F = F * i Next i Kaijyou = F End Function このように再帰的プログ

  • 1