タグ

algorithmに関するdrunkturtleのブックマーク (7)

  • プログラミングコンテストでのデータ構造 2 ~平衡二分探索木編~

    1. 2012/3/20 NTTデータ駒場研修所 (情報オリンピック春合宿) プログラミングコンテストでの データ構造2 ~平衡二分探索木編~ 東京大学情報理工学系研究科 秋葉 拓哉 1 2. 自己紹介 • 秋葉 拓哉 / @iwiwi • 東京大学 情報理工学系研究科 コンピュータ科学専攻 • プログラミングコンテスト好き • プログラミングコンテストチャレンジブック 2 3. データ構造たち (もちろん他にもありますが) • 二分ヒープ • 組み込み辞書 (std::map) • Union-Find 木 初級編 • Binary Indexed Tree コンテストでの データ構造1 • セグメント木 (2010 年) • バケット法 中級編 • 平衡二分探索木 • 動的木 講義 • (永続データ構造) 3

    プログラミングコンテストでのデータ構造 2 ~平衡二分探索木編~
  • アルゴリズムの世界地図 - Qiita

    こんにちは、square1001 です。 現在は東京大学の学部 1 年生をしています。私は中学 1 年の頃からプログラミングをやっていて、特にアルゴリズムが大好きです。AtCoder をはじめとする 競技プログラミング にも取り組んでいて、中高生のときは 情報オリンピック にも参加していました。 記事では、アルゴリズムや競技プログラミングに興味がある方、あるいはプログラミングをやっているけどアルゴリズムをよく知らない方に アルゴリズムはどんなもので アルゴリズムを使うとどんな問題が解けて アルゴリズムが地球のように広く、多様で、奥深く、そして楽しいこと を知ってもらおうと思っています。 アルゴリズムの世界へようこそ 時代は 2020 年代に突入し、急速に IT 化 や DX が進んでいく中で、問題を効率的に解くアルゴリズム技術の重要性が、ますます高まっています。そして、アルゴリズムは、世

    アルゴリズムの世界地図 - Qiita
  • Python言語による実務で使える100+の最適化問題 | opt100

    はじめに 書は,筆者が長年書き溜めた様々な実務的な最適化問題についてまとめたものである. 書は,Jupyter Laboで記述されたものを自動的に変換したものであり,以下のサポートページで公開している. コードも一部公開しているが,ソースコードを保管した Github 自体はプライベートである. を購入した人は,サポートページで公開していないプログラムを 圧縮ファイル でダウンロードすることができる. ダウンロードしたファイルの解凍パスワードは<に記述>である. 作者のページ My HP 書のサポートページ Support Page 出版社のページ Pythonによる実務で役立つ最適化問題100+ (1) ―グラフ理論と組合せ最適化への招待― Pythonによる実務で役立つ最適化問題100+ (2) ―割当・施設配置・在庫最適化・巡回セールスマン― Pythonによる実務で役立つ

  • FFT(高速フーリエ変換)を完全に理解する話 - Qiita

    となります。 この $C_i$ を、$0\leq i\leq 2N$ を満たすすべての $i$ について求めるのが今回の目標です。 それぞれ愚直に求めると、$f,g$ の全項を組み合わせて参照することになるので、 $O(N^2)$ です。これをどうにかして高速化します。 多項式補間 愚直な乗算は難しそうなので、$C_i$ の値を、多項式補間を用いて算出することを考えます。 多項式補間とは、多項式の変数に実際にいくつかの値を代入し、多項式を計算した値から、多項式の係数を決定する手法です。 たとえば、$f(x)=ax+b$ という $1$ 次関数があるとします。 $a$ と $b$ の値は分かりませんが、$f(3)=5,f(7)=-3$ がわかっているものとします。 実際に $3,7$ を代入してみると、 $3a+b=5$ $7a+b=-3$ と、連立方程式が立ち、$a,b$ の値が求められま

    FFT(高速フーリエ変換)を完全に理解する話 - Qiita
  • 明日使えないすごいビット演算

    最適輸送問題(Wasserstein 距離)を解く方法についてのさまざまなアプローチ・アルゴリズムを紹介します。 線形計画を使った定式化の基礎からはじめて、以下の五つのアルゴリズムを紹介します。 1. ネットワークシンプレックス法 2. ハンガリアン法 3. Sinkhorn アルゴリズム 4. ニューラルネットワークによる推定 5. スライス法 このスライドは第三回 0x-seminar https://sites.google.com/view/uda-0x-seminar/home/0x03 で使用したものです。自己完結するよう心がけたのでセミナーに参加していない人にも役立つスライドになっています。 『最適輸送の理論とアルゴリズム』好評発売中! https://www.amazon.co.jp/dp/4065305144 Speakerdeck にもアップロードしました: https

    明日使えないすごいビット演算
  • ビットを数える・探すアルゴリズム

    作成日:2004.05.04 修正日:2012.09.01 このページは 2003年の9/11、9/28 の日記をまとめて作成。 はじめに PowerPC 系や Alpha などには population count と呼ばれるレジスタ中の立っているビット数を数える命令が実装されている。 集合演算を行うライブラリを実装したい場合などに重宝しそうな命令である。 職場でこの population count 命令について話をしているうちにビットカウント操作をハードウェアで実装するのは得なのか?という点が議論になった。 CPU の設計をできるだけシンプルにするためには、複雑で使用頻度の低い命令は極力減らした方がよい。 例えば SPARC は命令セット中にビットカウント演算があるが、CPU 内には実装しないという方針をとっている(population 命令を実行すると不正命令例外が発生し、それを

  • 計算量オーダーの求め方を総整理! 〜 どこから log が出て来るか 〜 - Qiita

    NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。今回は計算量オーダーの求め方について書きます。 0. はじめに 世の中の様々なシステムやソフトウェアはアルゴリズムによって支えられています。Qiita Contribution ランキング作成のために用いるソートアルゴリズムのような単純なものから、カーナビに使われている Dijkstra 法、流行中のディープラーニングに用いられている確率的勾配降下法など、様々な場面でアルゴリズムが活躍しています。アルゴリズムとはどんなものかについて具体的に知りたい方には以下の記事が参考になると思います: アルゴリズムとは何か ~ 文系理系問わず楽しめる精選 6 問 ~ アルゴリズムを学ぶと $O(n^2)$ や $O(n\log{n})$ や $O(2^n)$ といった計算量オーダーの概念が登場します。こうした記法を見ると

    計算量オーダーの求め方を総整理! 〜 どこから log が出て来るか 〜 - Qiita
  • 1