タグ

量子に関するgauquiのブックマーク (8)

  • asahi.com(朝日新聞社):電子「1個だけ」移動成功 量子コンピューターへの一歩 - サイエンス

    印刷 電子を「1個だけ」送るしくみ  半導体の基板上で、電子を1個だけ取り出し、その磁気の向きを維持した状態で別の場所に送ることに、東京大の樽茶(たるちゃ)清悟教授らのチームが成功した。膨大な計算をこなせる「量子コンピューター」の基礎技術につながる可能性がある。世界初の成果で、22日の英科学誌ネイチャー電子版で発表する。  樽茶教授はフランスの研究者らと、半導体の基板に金属で微細な電子の通り道を作った。その一端に電圧をかけ、そこにある電子1個を残してすべて追い出した。次に半導体を振動させて波を起こして、それに電子を乗せて基板の反対側の端に送った。  実験では、電子が持つ磁気の向きが乱れ始める時間の数十分の1の短時間で電子を送れた。電子の磁気の様々な向きで膨大な情報を表現、これを処理して高速計算を実現しようという量子コンピューター構想がある。周りに電子があると、影響を受けて磁気の向きはすぐに

  • COM(量子力学と量子コンピュータ) - faain-635

  • 海外FXボーナスおすすめ比較17選!日本人に人気のFX業者一覧を紹介【2024年2月徹底調査】

    海外FX業者を利用する上で、ボーナスは絶対に欠かせません。口座を新規開設するだけでもらえる「口座開設ボーナス」、入金時にもらえる「入金ボーナス」、その他にもキャッシュバックなど、様々なボーナスがもらえます。 受け取ったボーナスはそのまま取引に使え、利益が出た時は出金することも可能です。お得はあっても損はないボーナスなので、海外FX業者を選ぶ際には必ず比較しておきたいところです。 そこでこの記事では、海外FXボーナス(口座開設ボーナス・入金ボーナスキャンペーン)を徹底的に研究した上で、おすすめ比較ランキングにまとめてみました。日人に人気のFX業者だけでなく、マイナーの海外FX業者や注意点なども詳しく解説していきます。 「海外FXボーナスが豪華な業者をすぐに知りたい」という方向けに、海外FXボーナス選びに役立つカオスマップを作成したのでこちらも併せて参考にしてください。 「どのFX業者で口座

  • 不確定性原理 - Wikipedia

    不確定性原理(ふかくていせいげんり、(独: Unschärferelation、英: Uncertainty principle)は、量子力学に従う系の物理量を観測したときの不確定性と、同じ系で別の物理量を観測したときの不確定性が適切な条件下では同時に0になる事はないとする一連の定理の総称である。特に重要なのは、がそれぞれ位置と運動量のときであり、狭義にはこの場合のものを不確定性原理という。 原理的には、一般のフーリエ解析で窓関数を狭めるほど得られるスペクトルが不正確となるのと同種の説明がなされる。 このような限界が存在するはずだという元々の発見的議論がハイゼンベルクによって与えられたため、これはハイゼンベルクの原理という名前が付けられることもある。しかし後述するようにハイゼンベルク自身による不確定性原理の物理的説明は、今日の量子力学の知識からは正しいものではない。 今日の量子力学において

  • 3者間の量子テレポーテーション実験に成功(基礎研究最前線)

    古澤 明 (ふるさわ あきら) (東京大学大学院工学系研究科 助教授) 戦略的創造研究推進事業チーム型研究(CRESTタイプ) 研究領域「量子情報処理システムの実現を目指した新技術の創出」研究代表者 “量子テレポーテーション”とは「A点での量子状態が消え、それが別のB点に現れる」ことです。まるでSFみたいな話ですが、A点での量子状態がB点に現れるのですから、この量子状態に情報としての意味を持たせれば、A点からB点に情報が伝わったことになります。量子テレポーテーションが将来の情報通信・処理技術の基礎中の基礎、つまり土台と言われるわけです。東京大学大学院工学系研究科の古澤明助教授は3つの光子(光)に共通した“量子的なもつれ”(量子エンタングルメントと言います)を持たせて3者間でこれを制御、世界で初めて3者間での量子テレポーテーション実験に成功しました。今回の成功で量子による情報通信・処理のネッ

  • http://ja.wikipedia.org/wiki/%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3%EF%BC%9D%E3%83%9D%E3%83%89%E3%83%AB%E3%82%B9%E3%82%AD%E3%83%BC%EF%BC%9D%E3%83%AD%E3%83%BC%E3%82%BC%E3%83%B3%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83

  • 量子もつれ - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Quantum entanglement|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針につ

  • 量子コンピュータ - Wikipedia

    量子コンピュータ (りょうしコンピュータ、英: quantum computer)は量子力学の原理を計算に応用したコンピュータ[1]。古典的なコンピュータで解くには複雑すぎる問題を、量子力学の法則を利用して解くコンピュータのこと[2]。量子計算機とも。極微細な素粒子の世界で見られる状態である重ね合わせや量子もつれなどを利用して、従来の電子回路などでは不可能な超並列的な処理を行うことができる[1]と考えられている。マヨラナ粒子を量子ビットとして用いる形式に優位性がある。 2022年時点でおよそ数十社が量子コンピュータ関連の開発競争に加わっており、主な企業としては、IBM (IBM Quantum)、Google Quantum AIMicrosoft、Intel、AWS Braket、Atos Quantumなどが挙げられる[3]。 研究成果の年表については、英語版のen:Timeline

  • 1