タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

algorithmとmlに関するgoto0のブックマーク (5)

  • ディープラーニングの限界 | POSTD

    (注:2017/04/08、いただいたフィードバックを元に翻訳を修正いたしました。 @liaoyuanw ) この記事は、私の著書 『Deep Learning with PythonPythonを使ったディープラーニング)』 (Manning Publications刊)の第9章2部を編集したものです。現状のディープラーニングの限界とその将来に関する2つのシリーズ記事の一部です。 既にディープラーニングに深く親しんでいる人を対象にしています(例:著書の1章から8章を読んだ人)。読者に相当の予備知識があるものと想定して書かれたものです。 ディープラーニング: 幾何学的観察 ディープラーニングに関して何より驚かされるのは、そのシンプルさです。10年前は、機械認識の問題において、勾配降下法で訓練したシンプルなパラメトリックモデルを使い、これほど見事な結果に到達するなど誰も想像しませんでした。

    ディープラーニングの限界 | POSTD
  • オンラインEMアルゴリズム - DO++

    EMアルゴリズム(Expectation Maximizationアルゴリズム、期待値最大化法、以下EMと呼ぶ)は、データに観測できない隠れ変数(潜在変数)がある場合のパラメータ推定を行う時に有用な手法である。 EMは何それという人のために簡単な説明を下の方に書いたので読んでみてください。 EMのきちんとした説明なら持橋さんによる解説「自然言語処理のための変分ベイズ法」や「計算統計 I―確率計算の新しい手法 統計科学のフロンティア 11」が丁寧でわかりやすい。 EMは教師無学習では中心的な手法であり、何か観測できない変数を含めた確率モデルを作ってその確率モデルの尤度を最大化するという枠組みで、観測できなかった変数はなんだったのかを推定する場合に用いられる。 例えば自然言語処理に限っていえば文書や単語クラスタリングから、文法推定、形態素解析、機械翻訳における単語アライメントなどで使われる。

    オンラインEMアルゴリズム - DO++
  • Reinforcement Learning / Successes of Reinforcement Learning

    The ambition of this page is to collect RL success stories. By "success story" we mean an application of RL methods to a substantial and difficult problem domain that is of independent interest (to some community). Yes, this is vague and if that leads to a longer list than otherwise, that may be ok. Robotics (Quadruped Gait Control) Policy Gradient Reinforcement Learning for Fast Quadrupedal Locom

  • 強化学習とは?(What is Reinforcement Learning?)

    強化学習の概要,応用上の利点,適用例,基礎理論,代表的手法,応用に必要な技術などの説明。 ページの記述は下記の解説記事をもとにWEB用に修正したものである: 木村 元,宮崎 和光,小林 重信: 強化学習システムの設計指針, 計測と制御, Vol.38, No.10, pp.618--623 (1999), 計測自動制御学会. 6 pages, postscript file, sice99.ps (1.31MB) PDF file, sice99.pdf (148KB) 第1章: 強化学習の概要 1.1 強化学習 (Reinforcement Learning) とは? 1.2 制御の視点から見た強化学習の特徴 1.3 応用上期待できること 第2章: 強化学習の適用例:ロボットの歩行動作獲得 第3章: 強化学習の基礎理論 3.1 マルコフ決定過程(Markov decision proc

    強化学習とは?(What is Reinforcement Learning?)
  • 強化学習1

    申し訳ございません. お探しのページが見つかりませんでした. お探しのページは,移動もしくは削除された可能性があります. Sorry.The page you're looking for can't be found. The page you're looking for have been moved or deleted. 村田研究室のWebサイトへようこそ! 〒169-8555 東京都新宿区大久保 3-4-1 63号館6F-18 早稲田大学 先進理工学研究科電気・情報生命専攻 村田昇研究室 Email: noboru.murata[at]eb.waseda.ac.jp

  • 1