Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
結論 Online DDLできない制約にひっかかってた InnoDB tables created before MySQL 5.6 do not support ALTER TABLE ... ALGORITHM=INPLACE for tables that include temporal columns (DATE, DATETIME or TIMESTAMP) and have not been rebuilt using ALTER TABLE ... ALGORITHM=COPY. In this case, an ALTER TABLE ... ALGORITHM=INPLACE operation returns the following error: ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Rea
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 本記事は拙ブログ記事「暗号化とハッシュ化に関する基本的な事柄まとめ - the world as code」のリファイン版です。 暗号化とハッシュ化は違う。暗号化はデータの秘匿を目的としており、適切な鍵を用いることで復号が可能。ハッシュ化はデータの置換がそもそもの目的であり、ハッシュ関数により一定のフォーマットへ不可逆の変換を行う。 ただし、衝突耐性を持つことなどにより、セキュリティ用途に適する「暗号学的ハッシュ関数」というものもあるらしい。デジタル署名やメッセージ認証符号への使用を目的とされており、逆にチェックサム等に使用するには計算
Photo by Oferico 皆さんはアルゴリズムやデータ構造について勉強したことはありますか?そして、基本的なアルゴリズムについて、どのようなものがあって、どのようなときに使うとよいかといったことを説明することができますか? 仕事をしていると、プログラミング言語等の勉強や業務に忙しくて、正直アルゴリズムどころではないという場合がほとんどでしょう。しかし、いつか勉強しようと思っていたけど、基本的なアルゴリズムにどんなものがあるのかなんて今更聞けないな……ということもあるかと思います。 今回はそんな方に向けて、基本的なアルゴリズムの一部の概要に加え、アルゴリズムの勉強に役立つサイト、書籍をご紹介したいと思います。 ■アルゴリズムを学ぶ意味 例えば、ソート等については、通常はすでにソート関数があるので、自分で作らなくても済む=アルゴリズムも勉強しなくていいと思ってしまうかもしれません。しか
このブログを読んでいる人なら Google や AWS の 2 段階認証(マルチファクタ認証)を有効にしていると思います。もしパスワードが漏れてしまってもワンタイムパスワードを入力しないと認証されないので安心です。 有名どころのサービスでは使えるところが増えてきましたが、2 段階認証を有効にしていれば万全なのでしょうか。エンジニアである以上、その仕組みを理解したうえで自信を持って安全と言いたいところ。 というわけで、2 段階認証は本当に安全なのか仕様を紐解きながら調べてみました。 ワンタイムパスワードの仕様 ワンタイムパスワードを生成する仕様は HOTP と TOTP の 2 つがあり、RFC の仕様になっています(TOTP はドラフト段階)。 HOTP (HMAC-Based One-Time Password Algorithm) TOTP (Time-Based One-Time P
各種レコメンドアルゴリズムの特徴をメモ。 間違いの指摘やご意見はお気軽に @ts_3156 までご連絡ください(^^) レコメンドとは 何かしらの「アイテム」をユーザーにおすすめする仕組みのこと。 アイテムは場合によって様々で、ECサイトなら商品、ニュースサイトならブログ記事、ツイッターならユーザーそのもの、がアイテムに当たる。 代表的なレコメンドアルゴリズムの種類 ルールベース 決め打ちレコメンド。 例:(今はA社とタイアップ中だから、)うちの商品を買った人にA社の商品をおすすめしよう コンテンツベース アイテム間の類似度に基づいたレコメンド。 例:野球のバットを買った人には野球のボールをおすすめしよう 協調フィルタリング レコメンドの話で一番話題に登るのはこのアルゴリズム。ユーザーの行動履歴からおすすめするアイテムを決める。アイテム情報を知らずにおすすめする点がポイント。アイテム情報を
はじめに 今回から9回に渡り、Hadoopを使ったレコメンドシステムの実装について紹介させていただくことになりました。 レコメンドシステムを構築した方は少ないと思いますが、レコメンドのサービスに触れている方は多いと思います。今回の連載で、読者の皆様にレコメンドシステムの可能性とその実装の面白さをお伝えできればと思います。よろしくお願い申し上げます。 連載の予定は次の通りです。 レコメンドシステムと集合知(今回) レコメンドシステムの実装と課題 協調フィルタリング(前・後編) コンテンツベースレコメンド(前・後編) 今回の記事のポイントは以下の通りです。 レコメンドシステムの目的は気付きと驚きを与えること 理想のレコメンドはソムリエのお薦め レコメンドシステムに必要なのは嗜好と専門性 では、早速はじめましょう。 レコメンドシステムとは? レコメンドシステムは情報フィルタリングの一種で、大量の
著者の定義によると、アルゴリズムとは「問題を解決するために必要な手順を正確に規定したレシピ」である。コンピュータ・サイエンスを専門とする大学教授の手による本書は、現在当たり前のように使われている偉大なコンピュータ・アルゴリズムがなぜ必要とされたのか、どのように考え出されたか、そして、それが実際にどのような仕組みで動いているのかを教えてくれる。 このように紹介すると、コンピュータやプログラミングが苦手な人は手が遠のいてしまうかもしれないが、どうかご安心を。本書を楽しむのに、コンピュータプログラミングやコンピュータ科学の知識は必要ない。必要なのはじっくりと考えることだけだ。 一口にサイエンス本といっても面白いポイントはそれぞれに異なるが、本書の面白みは間違いなく、過去の偉人たちの難問への挑戦を疑似体験できるところにある。その面白みを満喫するためにも、頭から煙を出しながらじっくりと考えながら読む
この記事で、アルゴリズムの勉強はアルゴリズムカタログを覚えることじゃないよということを書きました。 プログラムの理論とはなにか アルゴリズムの勉強というのは、スポーツで言えば腕立て伏せや走り込みみたいな基礎体力を養うようなもので、「ソートなんか実際に自分で書くことないだろう」とかいうのは「サッカーは腕つかわないのに腕立ていらないだろう」とか「野球で1kmも走ることなんかないのに長距離の走り込みいらないだろう」とか言うようなものです。 Twitterでアルゴリズムの勉強とはなにかと尋ねられて、「アルゴリズムの基本的なパターンを知って、それらの性質の分析のしかたをしって、いろいろなアルゴリズムでどのように応用されているか知って、自分が組むアルゴリズムの性質を判断できるようになることだと思います。 」と答えたのですが、じゃあ実際どういう本で勉強すればいいか、ぼくの知ってる本からまとめてみました。
Googleアルゴリズムの200の要素を発見しましょう!(Let’s Try to Find All 200 Parameters in Google Algorithm) は2009年に書かれた記事ですが、パンダアップデートが適用された今現在(2011年4月)でも重要項目が多く書かれているもので。 多くはGoogleの特許(合衆国特許出願0050071741)に基づいていますが、筆者のアンが自身の解析結果や予測を盛り込んでいる事で、より実践に近い内容になっています。 SEO初心者の方は、これからのウェブ制作の軸に、SEOエキスパートの方はもう一度自身のサイトを見直す目次として確認してみてはいかがでしょうか。 ドメインに関する13要因 ドメイン年齢 ドメイン取得からの長さ ドメイン登録情報(Who is情報)の表示/非表示 ドメイン種類(サイトレベルドメイン(.com や co.uk) ト
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く