個人的にもやもやと考えたカリキュラムです。日本の大学には存在しない統計学部がもしあったら、こんなカリキュラムを組みたいなぁ、と。 統計学の講義は分布や変数の型を教えるところから入るんだけど、授業を受けていて分かりにくいな〜と学生の頃から常々感じていました。(あくまでも個人的な偏見と妄想に満ち溢れた記事であることをご了承ください。。) それでは、カリキュラムを発表します!! 1. データ解析I一般化線形モデル教師付き機械学習非線形モデル(一般化加法モデル)カテゴリカルデータ解析生存時間解析グラフィカルモデリング経時データの解析探索的データ解析(EDA)多次元データの縮約非教師付き機械学習(クラスタリング)データマイニング 2. データ解析IIデータハンドリングI(R)データハンドリングII(perl、rubyなどスクリプト言語)データベースからのデータ取得I(RDBMS系)データベースからの