タグ

pandasに関するhorihorioのブックマーク (9)

  • Pandasで行うデータ処理を100倍高速にするOut-of-CoreフレームワークVaex - フリーランチ食べたい

    TL;DR アウトオブコア、かつマルチコアでデータ処理を行えるVaexの紹介です。 string関係のメソッドで平均して100倍以上の高速化が確認できました。(作者のベンチマークだと最大1000倍) 文字列処理以外でも数倍~数十倍の高速化が行えそうです。 この記事では性能の比較のみ行い、解説記事は別で書こうと思います。 pandasより1000倍早いフレームワーク? 今週、興味深い記事を読みました。重要な部分だけ抜き出すと次のような内容です。 Vaexの最近のアップデートでの文字列処理が超早くなった 32コアだとpandasと比べて1000倍早い towardsdatascience.com 1000倍って当なの?って感じですよね。そもそも自分はVaex自体を知らなかったので調べてみました。 ちなみに調べていて気づいたのですが、この記事の著者はVaexの作者なんですよね。 疑っているわけ

    Pandasで行うデータ処理を100倍高速にするOut-of-CoreフレームワークVaex - フリーランチ食べたい
  • 時間のかかる前処理をDaskで高速化 - ぴよぴよ.py

    最近仕事で自然言語処理を使ったモデルを作成していたんですが、 前処理やモデルを作る際に数分〜数十分単位の処理待ちの空き時間が頻繁に発生してしまい、 その度集中力が切れる問題に悩まされていました。 モデルの学習に時間がかかってしまうのはまた別の解決策を考えるとして、 今回は時間のかかる前処理をDaskをつかって高速化した方法をお話ししようと思います。 この記事は PyLadies Advent Calendar 2018 - Adventar の18日目の記事になります。 Daskとは? Daskとは、numpyやpandasなどのデータを簡単に並列計算するライブラリ。 あまり公式のチュートリアルがわかりやすくない(気がする)ので、基的な使い方は Python Dask で 並列 DataFrame 処理 - StatsFragments を見てみると良い。 サンプルデータ 今回はKagg

    時間のかかる前処理をDaskで高速化 - ぴよぴよ.py
  • Kaggleで使えるpandasテクニック集 - 天色グラフィティ

    PythonでKaggleなどのデータ分析を行う際、pandasでゴリゴリ作業をすることが多いかと思います。 最近知って「めっちゃ便利やん!」ってなったものをまとめておきたいと思います。 全部の関数にドキュメントへのリンクを付けたので参考にしてください。 今回も検証にはTitanicのデータセットを用います。また、文中でのdf.hoge()はpandasのDataFrameのメソッドであることを、pd.hoge()はpandasの関数であることを表します。 df = read_csv('input/train.csv', index_col=0) print(df.shape) df.head() 最低限押さえておきたいやつら まずはここから。 10 Minutes to pandas よく使うやつら。詳しい解説は省略するので、ドキュメントのリンク先を見てください。 関数 内容 リンク d

    Kaggleで使えるpandasテクニック集 - 天色グラフィティ
  • Pandasで特徴量取得する場合に使う操作をまとめてみた - のんびりしているエンジニアの日記

    皆さんこんにちは お元気ですか。私は元気です。 分析は基的にPythonを使って行います。(大体Pandasですが・・・) Pandasを利用すると色々できます。が、ふとどうするんだっけ処理が増えていきました。 自分のメモがてらカテゴリを分けて記録に残したいと思います。 最後のほうは特徴量の作り方集になっています。 Kaggleで実際に使ったことがある処理も数多く掲載しました。 思いついたら随時、追加しようと思います。 準備 ファイル操作 読み込み 書き込み テーブル操作 1行ごとに処理をする。 複数列を取得する。 選択操作 テーブル条件の指定 複数条件の指定 NaNを埋める。 カラム、テーブルの統計情報を取得する。 完全一致の列を発見し、除去する。 日付操作 日付から日などの情報を取得する。 2つ以上のDataFrameの結合操作 内部結合 外部結合 2つの結合処理 集計操作を使った特

    Pandasで特徴量取得する場合に使う操作をまとめてみた - のんびりしているエンジニアの日記
  • Pandasによる実践データ分析入門 - Gunosyデータ分析ブログ

    こんにちは。データ分析部のオギワラです。最近は「NANIMONO (feat.米津玄師)」をよく聞いています。 今回はPythonデータ分析ライブラリであるPandasについて、実践的なテクニックを「データ処理」「データ集計(Group By)」「時系列処理」の3カテゴリに分けてご紹介していきます。 Pandasに関する基的な内容については、前エントリーで既に紹介されているので、是非こちらもご一読して頂けると幸いです。 data.gunosy.io データ処理 データの取り出し(query) 条件文に基づくデータ処理の適用(where) 各行への関数の適用(apply) データ集計(Group By) カラム毎に異なる集計を適用する(agg) 最大・最小値である行を取り出す(first) 標準化や正規化処理を適用する(transform) 時系列処理 時間の丸め処理(round) 時系

    Pandasによる実践データ分析入門 - Gunosyデータ分析ブログ
  • Python pandas 欠損値/外れ値/離散化の処理 - StatsFragments

    データの前処理にはいくつかの工程がある。書籍「データ分析プロセス」には 欠損など 前処理に必要なデータ特性の考慮とその対処方法が詳しく記載されている。 が、書籍のサンプルは R なので、Python でどうやればよいかよく分からない。同じことを pandas でやりたい。 データ分析プロセス (シリーズ Useful R 2) 作者: 福島真太朗,金明哲出版社/メーカー: 共立出版発売日: 2015/06/25メディア: 単行この商品を含むブログ (2件) を見る とはいえ、pandas 自身は統計的 / 機械学習的な前処理手法は持っていない。また Python には R と比べると統計的な前処理手法のパッケージは少なく、自分で実装しないと使えない方法も多い。ここではそういった方法は省略し、pandas でできる前処理 / 可視化を中心に書く。 また、方法自体の説明は記載しないので、詳細

    Python pandas 欠損値/外れ値/離散化の処理 - StatsFragments
  • Ultimate Guide for Data Exploration in Python using NumPy, Matplotlib and Pandas

    Ultimate Guide for Data Exploration in Python using NumPy, Matplotlib and Pandas Introduction Data exploration sets and developing a deep understanding of the data is one of the most important skills every data scientist should possess. People sometimes estimate that the time spent on these activities can go as high as 80% of the project time. Python has been gaining much ground as a preferred too

    Ultimate Guide for Data Exploration in Python using NumPy, Matplotlib and Pandas
  • Python pandas データ選択処理をちょっと詳しく <前編> - StatsFragments

    概要 書いていて長くなったため、まず前編として pandas で データを行 / 列から選択する方法を少し詳しく書く。特に、個人的にはけっこう重要だと思っている loc と iloc について 日語で整理したものがなさそうなので。 サンプルデータの準備 import pandas as pd s = pd.Series([1, 2, 3], index = ['I1', 'I2', 'I3']) df = pd.DataFrame({'C1': [11, 21, 31], 'C2': [12, 22, 32], 'C3': [13, 23, 33]}, index = ['I1', 'I2', 'I3']) s # I1 1 # I2 2 # I3 3 # dtype: int64 df # C1 C2 C3 # I1 11 12 13 # I2 21 22 23 # I3 31 32

    Python pandas データ選択処理をちょっと詳しく <前編> - StatsFragments
  • Python pandas 図でみる データ連結 / 結合処理 - StatsFragments

    なんかぼやぼやしているうちにひさびさの pandas エントリになってしまった。基的な使い方については網羅したい気持ちはあるので、、、。 今回は データの連結 / 結合まわり。この部分 公式ドキュメント がちょっとわかりにくいので改訂したいなと思っていて、自分の整理もかねて書きたい。 公式の方はもう少し細かい使い方も載っているのだが、特に重要だろうというところだけをまとめる。 連結 / 結合という用語は以下の意味で使っている。まず憶えておいたほうがよい関数、メソッドは以下の 4 つだけ。 連結: データの中身をある方向にそのままつなげる。pd.concat, DataFrame.append 結合: データの中身を何かのキーの値で紐付けてつなげる。pd.merge, DataFrame.join 連結 (concatenate) 柔軟な連結 pd.concat ふたつの DataFram

    Python pandas 図でみる データ連結 / 結合処理 - StatsFragments
  • 1