# 失敗から学ぶRDBの正しい歩き方 - https://amzn.to/4e0CqfH
# 失敗から学ぶRDBの正しい歩き方 - https://amzn.to/4e0CqfH
バックエンドエンジニア兼万年ダイエッターの taisa です。毎朝子どもの幼稚園バス送りのついでに短距離ダッシュして運動してます。はたから見ると変な人ですが、バスを追っかけるようにダッシュすると幼稚園バスの子どもたちは喜んでくれます。 テックタッチは以前、マイクロサービスの切り直し後に DB 統合を実施しました。本記事では、テックタッチがどういったプロセスで DB 統合を実施したかを紹介します。また、AWS DMS を利用する際に気をつけるポイントについても合わせて紹介します。 マイクロサービス切り直し記事のおさらい なぜ DB 統合したか Before After DB 統合の前提条件 やりたいこと 制約 DB の特徴 サービスの特性 AWS DMS(Database Migration Service)とは どのように DB 統合したか Phase1:DMS でレプリケーションを開始す
趣味開発でマネージドデータベースに課金したくない勢に安DBソリューションとして好評だったlitestreamについての近況をまとめてみました。安DBという謎の用語は「運用コストが安いデータベース」の意味で今作りました。 軽くおさらいするとlitestreamはSQLiteのレプリケーションを実現するミドルウェアで[1]、LiteFSはそれを分散環境に拡張してスケールをしようとしたもの[2]。 LiteFS Cloudはサ終した litestreamの技術をマネージドサービスにしようとたくらんだLiteFS Cloudは[3]、有料版が始まったかと思ったらいきなり提供終了した。 全然利用されなかったことが理由のようだ。確かにLiteFS自体が実験的な段階のソフトウェアな上にConsulサーバーと連携したり使いこなすのは難しい印象があった。 LiteFS は開発停止してる LiteFS自体は放
開発者向けのSQLインデックス解説サイト、管理についての間違いない知識を提供します。 インデックスは開発時には忘れられがちである一方で、非常に効果的なSQLのチューニング方法です。Use The Index, Lukeでは、HibernateなどのORMツールの解説にとどまらず、SQLのインデックスについて基礎から説明します。 Use The Index, LukeはSQLパフォーマンス詳解のWeb上の無料版です。サイトを気に入って頂けたら、ぜひ書籍も購入してみて下さい。また、このサイトの運営をサポートする様々なグッズも販売しています。 MySQL、Oracle、SQL ServerなどにおけるSQLのインデックスUse The Index, Lukeでは、ベンダにとらわれないインデックスの説明を心がけています。製品特有の事柄については、以下のような表示をしています。 DB2Use The
こんにちは。 AI事業本部の協業リテールメディアdivでバックエンドエンジニアをしている yassun7010 といいます。 先日、 AI 事業本部の新人研修で「データアプリケーション」の講師を同じチームの 千葉 と担当しました。 今回の記事では、主に私が担当した「データベースの歴史」の章の講義資料を公開し、資料を作成する際に考えていたこと・伝えたかったことを話します。 「データベースの歴史」で説明されている内容は、AI事業本部の新卒研修で毎年取り上げられているものです。こういった研修の資料は、同じテーマであっても講師をする人の好みが反映されやすく、今年の資料も先人が作られた昨年の資料を参考にしつつ、私が好きな話題を多く取り入れたものに仕上がりました。 SlideShare でも公開しています。 今年の構成は、データベースを RDS・NoSQL・NewSQL として分け、下記のような構成を
Skip to the content. 自作RDBMSやろうぜ! このサイトの目的 RDBMS(いわゆるリレーショナルデータベース)というものはプログラミング言語の処理系や、OSなどと同様に、世の中で広く使われているソフトウェアであるにも関わらず、いざ自作してみようと思うと日本語で記述されたサイトや書籍で、必要な情報・情報源がまとまったものがないことに気づきました そこで、叩き台として、本サイト管理人および数名のコミッタで開発している自作RDBMSである SamehadaDB が軌道に乗るまでの経験をベースに、自作RDBMSするための道筋をある程度整理して書き記してみました 各々の情報・情報源はあいかわらず多くが英語で記述されていますが、その点はご容赦下さい なお、本サイトは技術的な解説を提供するのではなく、適切と思われる情報・情報源をポイントするようなサイトとなることを想定しています
tl;dr はじめに DuckDB とは DuckDB では何が読めるのか 使ってみる S3 上のJSON を読んでみる リレーショナルデータベース 他ツールではなく DuckDB を使うメリット しくじりポイント (特にリリースされたばかりの)バージョンには気をつける S3 のオブジェクト数が多い場合不都合がありがち スレッドの調整が必要な場合も Redshift には未対応 終わりに 付録 MySQL のデータを読み込む例の MySQL 側の準備 tl;dr DuckDB 便利だよ。分析以外でも使えるよ 色々な場所のデータを閲覧・結合できるよ。標準SQLも使えるよ ただし、細かい落とし穴は色々あるので気をつけてね はじめに2023年4月にデータエンジニアとして入社したmin(@not_rogue)です。暖かくなるにつれ、YouTube で見た南伊豆ロングトレイル | 松崎町に行く機運が
株式会社ラクーンホールディングスのエンジニア/デザイナーから技術情報をはじめ、世の中のためになることや社内のことなどを発信してます。 bashパフォーマンスMySQLInnoDBDB設計インデックス こんにちは、羽山です。 今回は MySQL のプライマリキーに UUID を採用する場合に起きるパフォーマンスの問題を仕組みから解説します。 MySQL(InnoDB) & UUID のパフォーマンスについては各所でさんざん議論・検証されていますが、論理的に解説した記事が少なかったり一部には誤解を招くようなものもあるため、しっかりと理由から理解するための情報として役立つことができればと思っています。 UUID と比較される古き良き昇順/降順のプライマリキーはというと、 MySQL の InnoDB において良いパフォーマンスを出すために縁の下の力持ちのような働きをしてくれているケースが実は少な
はじめに みなさんはDBのインデックスを正しく使えていますか? 私はなんとなく「DBのパフォーマンスを向上するためのもの」という認識はあったのですが、 どのような場面で使うものなのか、逆にどのような場面では使うべきでないのかなど 明確に理解できていませんでした。 今回はそんなインデックスについての理解を深めたいと思います。 インデックスとは インデックスとは、その名の通り「索引」です。 表現の仕方と変えると、(x, a)という形式の配列であるとも言えます。 xというキー値とそれに結びつくaというデータ情報があり、 これを利用することですべてのデータを網羅して見ることなく、 まさに本の索引のように目的のデータにたどり着くことができます。 インデックスはSQLのパフォーマンスを改善するための非常にポピュラーな手段であり、 理由としては下記の3点が挙げられます。 アプリケーションのコードに影響を
序文 私の仕事は、DBエンジニアです。といっても別に望んでデータベースの世界へきたわけではなく、当初、私はこの分野が面白くありませんでした。「Web系は花形、データベースは日陰」という言葉も囁かれていました。今でも囁かれているかもしれません。 ですが、しばらくデータベースを触っているうちに、私はこの世界にとても興味深いテーマが多くあることを知りました。なぜもっと早く気づかなかったのか、後悔することしきりです。 もちろん、自分の不明が最大の原因ですが、この世界に足を踏み入れた当時、先生も、導きの書となる入門書もなかったことも事実です。 今でこそバイブルと仰ぐ『プログラマのためのSQL 第2版』も新入社員には敷居が高すぎました (2015年2月追記:その後、自分で第4版を訳出できたのだから、 人生は何があるか分からないものです)。 そこで、です。このサイトの目的は、データベースの世界に足を踏み
はじめに ※この発言は個人の見解であり、所属する組織の公式見解ではありません 用法用量を守り、個人の責任で業務に投入してください 参考資料 2024/02/14追記 実際のテーブル設計の詳細はこちらを参考にどうぞ。 agilejourney.uzabase.com 要件 User情報を保存するときにどのようなテーブル設計を行うか 今北産業で頼む テーブルに状態を持たせず状態毎のテーブルを作る 状態が変わればレコードを消して別のtableに作る tableの普遍的な情報は別に持たせる 僕の考えた最強のDB設計 PostgreSQLをベースの雑なER図を作った。 これを元に話を進める。 table構成 users 親tableであり、すべてのユーザはここに属する。 基本はINSERTのみでUPDATE、DELETEを考慮しない。 user_detail userに付随する詳細の情報がここに登録
SmartHRで届出書類という機能を担当しているプロダクトエンジニアのsato-sと申します。 今日は、以前私が調査にとても苦労したパフォーマンス上の問題の話を紹介したいと思います。 TL;DR PostgreSQLのアップグレードを実施した アップグレード後、今までは問題のなかった特定のクエリの実行に1時間超かかり、DBのCPU使用率がピッタリ100%に張り付くようになった 色々調査した結果、PostgreSQL上の型キャストの場所のせいで、良くないクエリプランが選択されることが原因だった 型キャストの場所には気をつけよう PostgreSQLのアップグレードと挫折 SmartHRでは基本的にWebアプリケーションのデータベースとしてGoogle CloudのCloudSQLによって提供されるPostgreSQLを利用しています。 私の担当している届出書類機能では、利用中のPostgre
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く