機械学習のモデルを構築した際、データサイエンティストとしての私たちの最終的なゴールは価値の創造でした。モデルが無かった(あっても今より原始的だった)頃よりも、何かしら良いものを生み出すためにモデルによる予測を活用したいのです。結果に焦点を当てるということはつまり、私たちのモデルのパフォーマンスの最終的な評価は、その有効性によって為されるということです。それは、モデルを利用したアプリケーションが生み出した価値の量として計測されます。この投稿では、ビジネスの価値を最大限にするモデル構築による意思決定を、選択したり理解したりする際の強力なツールとして、データの可視化を活用したいと思います。 分類アルゴリズムにおいて、最も一般的な利用パターンの1つが 閾値(しきいち) です。閾値以上のスコアを持つ全てのケースに対して、何らかの特別な処置を行うのです。以下に例を挙げます。 不正の防止: あなたはソー