タグ

algorithmとprogrammingに関するjimo1001のブックマーク (5)

  • GDBM で学ぶ Extendible Hashing

    最近仕事で GDBM を使う機会があり、GDBM で使われている extendible hashing に興味を持ったのでまとめてみました。 なお、今回対象にしている GDBM のバージョンは 1.12 です。 アジェンダ GDBM とは ハッシュテーブルの基礎 ハッシュ関数 衝突処理 リハッシュ Extendible Hashing GDBM による Extendible Hashing ハッシュ関数 ファイルヘッダのデータ構造 バケットのデータ構造 バケット要素のデータ構造 衝突処理 ディレクトリの拡張とバケットの分割 データベースファイルは要素数が多いと肥大化する おわりに 参考 GDBM とは http://www.gnu.org.ua/software/gdbm/ 曰く GNU dbm (or GDBM, for short) is a library of database f

    GDBM で学ぶ Extendible Hashing
  • アムダールの法則 - Wikipedia

    複数のプロセッサを使って並列計算してプログラムの高速化を図る場合、そのプログラムの逐次的部分は、制限を受ける。例えば、仮にプログラムの95%を並列化できたとしても、残りの部分である5%は並列処理ができないため、どれだけプロセッサ数を増やしたとしても、図で示したように20倍以上には高速化しない。 アムダールの法則(アムダールのほうそく、英語: Amdahl's law)は、ある計算機システムとその対象とする計算についてのモデルにおいて、その計算機の並列度を上げた場合に、並列化できない部分の存在、特にその割合が「ボトルネック」となることを示した法則である。コンピュータ・アーキテクトのジーン・アムダールが主張したものであり、アムダールの主張(アムダールのしゅちょう、英語: Amdahl's argument)という呼称もある[1]。 複数のプロセッサを使い並列計算によってプログラムの高速化を図る

    アムダールの法則 - Wikipedia
  • About - Project Euler

    About Project Euler What is Project Euler? Project Euler is a series of challenging mathematical/computer programming problems that will require more than just mathematical insights to solve. Although mathematics will help you arrive at elegant and efficient methods, the use of a computer and programming skills will be required to solve most problems. The motivation for starting Project Euler, and

    About - Project Euler
  • ビットを数える・探すアルゴリズム

    作成日:2004.05.04 修正日:2012.09.01 このページは 2003年の9/11、9/28 の日記をまとめて作成。 はじめに PowerPC 系や Alpha などには population count と呼ばれるレジスタ中の立っているビット数を数える命令が実装されている。 集合演算を行うライブラリを実装したい場合などに重宝しそうな命令である。 職場でこの population count 命令について話をしているうちにビットカウント操作をハードウェアで実装するのは得なのか?という点が議論になった。 CPU の設計をできるだけシンプルにするためには、複雑で使用頻度の低い命令は極力減らした方がよい。 例えば SPARC は命令セット中にビットカウント演算があるが、CPU 内には実装しないという方針をとっている(population 命令を実行すると不正命令例外が発生し、それを

  • 良い乱数・悪い乱数

    C言語標準ライブラリの乱数rand( )は質に問題があり、禁止している学会もある。 他にも乱数には様々なアルゴリズムがあるが、多くのものが問題を持っている。 最も多くの人に使われている乱数であろう Visual Basic の Rnd の質は最低である。 そもそも乱数とは 乱数とは、来サイコロを振って出る目から得られるような数を意味する。 このような乱数は予測不能なものである。 しかし、計算機を使って乱数を発生させた場合、 次に出る数は完全に決まっているので、予測不能とはいえない。 そこで、計算機で作り出される乱数を疑似乱数(PRNG)と呼び区別することがある。 ここでは、特にことわらない限り乱数とは疑似乱数のことを指すとする。 計算機でソフト的に乱数を発生させることの最大のメリットは、 再現性があることである。 初期状態が同じであれば、発生する乱数も全く同じものが得られる。 このことは

  • 1