自己組織化写像(じこそしきかしゃぞう、英: Self-organizing maps, SOM, Self-organizing feature maps, SOFM)はニューラルネットワークの一種であり、大脳皮質の視覚野をモデル化したものである。自己組織化写像はコホネンによって提案されたモデルであり、教師なし学習によって入力データを任意の次元へ写像することができる。主に1~3次元への写像に用いられ、多次元のデータの可視化が可能である。出力となる空間をマップ (map)、競合層 (competitive layer)、もしくは出力層 (output layer) と呼ぶ。出力層に対して入力データの空間を入力層(input layer)と呼ぶこともある。自己組織化写像はコホネンマップ (Kohonen map)、コホネンネットワーク (Kohonen network)、自己組織化マップ、ソム