InfoQ Software Architects' Newsletter A monthly overview of things you need to know as an architect or aspiring architect. View an example
2. 目次 • Deep Learning とは" – 機械学習について" – 従来の NN とのちがい" – Deep Learning のブレイクスルー" • dA (Denoising Autoencoders) をうごかす" – 数理モデルの解説" – Python で実装する前準備" – コードレビュー" – 実行結果" • RBM (Restricted Boltzmann Machines) をうごかす" – 数理モデルの解説" – 実行結果" • まとめ 4. Deep Learning とは • 入力信号からより抽象的な概念を学ぶ・特徴を抽出する 機械学習の手法の集合です " “ニューラルネットとどう違うの?”! • ニューラルネットを多層にしたんです " “従来のニューラルネットワークと何が違うの?”! • ひとつひとつのレイヤー間でパラ
印刷する メールで送る テキスト HTML 電子書籍 PDF ダウンロード テキスト 電子書籍 PDF クリップした記事をMyページから読むことができます 今回はビッグデータ活用において重要な役割を持つ「機械学習」を取り上げる。 機械学習とは大まかにいうと、データが持つ法則を見つけ出すアルゴリズムの総称である。その名の通り、経験をもとに知識を得る人間の学習過程に近い面がある。機械学習はすでに予測や分類、画像認識、商品のレコメンドなどに実際に使われている。筆者の携わってきた分析案件も、最終的に機械学習の問題に落とし込んだものが多い。 本稿では、機械学習が大量のデータを扱う手段であり、データの持つ価値を引き出す手段であることを最近10年の将棋の人工知能の発展を例に述べ、機械学習のビジネスにおける応用のポイントと注意点を述べる。機械学習の具体的な手法、その数理までは踏み込まず、機械学習の持つ機能
なお、劣モジュラー性についてさらに知りたい方は、チュートリアル[3]が参考になります。 昨年のNIPSでの動向 それでは、昨年のNIPSでの動向を見てみましょう。 Bach[4]は、L∞ノルムが劣モジュラー関数のロヴァース拡張から導出できることを示すことにより, 劣モジュラー性とスパース性との関係を示しました。さらに, この洞察から教師あり学習で用いることができる新しい3つのノルムを提案しました。また、勾配法や近接法が劣モジュラー関数最適化に使えることを示し, 実験によりL1,とL2ノルムを用いるより精度が良いことを示しました。 Stobbe and Krause[5]は、劣モジュラー関数を凹関数の和として分解できる新しいクラス(decomposable submodular function)を定義し, カット問題, マルコフ確率場の最適化, 集合被覆問題などがその新しいクラスの最小化問
あけましておめでとうございます。Preferred Infrastructureの海野と申します。このところ人工知能という言葉をよく聞くようになりました。名だたるIT関連企業が、こぞって人工知能をビジネス化しようとしているという印象をうけます。こうした背景には何があるのでしょうか。そして、本当に近い将来に人工知能による大きなビジネスが花開くのでしょうか。本稿では、ここ数年の技術開発のトレンドの変遷を通して、人工知能ビジネスの動向を探ります。 人工知能のこれまで 「人工知能」という言葉に対して、どのような印象を受けるでしょうか。人間と共存し、言葉をしゃべり、自分で思考するロボットのようなイメージを持つ方は少なくないと思います。もちろんこうした人工知能を見たことがないように、現状ではこうした人工知能はありません。このような汎用的な知能をもつ人工知能は「強いAI」とよばれ、より具体的な部分問題を
ビッグデータとかの機械学習隆盛の背景にある文脈や、その拠り所となるコンピュータの処理性能から考えても「モバイルデバイス向けOSと機械学習を紐付けて考えようとする」ことはそもそもあまり筋がよろしくない・・・とは思うのですが、やはり長くiOSだけにコミットしてきた身としては、新たに興味を持っている機械学習という分野と、勝手知ったるiOSという分野の交差点はないのかなと考えずにはいられないわけでして。。 そんなわけで、「iOS と機械学習」について雑多な切り口から調べてみました。 iOSで使える機械学習ライブラリ DeepBeliefSDK コンボリューショナルニューラルネットワークを用いた画像認識ライブラリ。iOSとかのモバイルデバイスで処理できるよう、高度に最適化してある、OpenCVと一緒に使うのも簡単、とのこと。 https://github.com/jetpacapp/DeepBeli
前回までに、分類問題のモデルの一つ「パーセプトロン」を紹介して、その実装を行いました。 パーセプトロンはとてもシンプルでわかりやすいモデルでしたが、「線形分離可能」なデータにしか適用できないという難点がありましたね。 今回は線形分離できないデータにも適用できる分類モデルとして、「ロジスティック回帰」を紹介します。 予測の信頼度 分類器を使って、実際の問題を解くときのことを考えてみます。例えば「メールのスパムフィルタ」などが想像しやすいでしょう。 一般的にスパムフィルタでは、データであるメールを「スパム(迷惑メール)」と「スパムではない(通常のメール)」のどちらかに分類します。そこで、ちょうどパーセプトロンのような2値分類器を使えば無事解決……とは、なかなかいきません。 スパムフィルタを通り抜けてしまった迷惑メールを一つ一つ消す、反対に必要なメールが間違ってスパムと判定されてしま
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? そうだ、Deep learningをやろう。そんなあなたへ送る解説記事です。 そう言いながらも私自身勉強しながら書いているので誤記や勘違いなどがあるかもしれません。もし見つけたらご連絡ください。 Deep learningとは こちらのスライドがとてもよくまとまっています。 Deep learning つまるところ、Deep learningの特徴は「特徴の抽出までやってくれる」という点に尽きると思います。 例えば相撲取りを判定するモデルを構築するとしたら、普通は「腰回りサイズ」「マゲの有無」「和装か否か」といった特徴を定義して、それを
みなさん、次のようなことができたらいいと思ったことはありませんか? 「顧客ごとに、適したタイミングと内容で、DMを送信できたら……」 「CGM系サイトへの誹謗中傷なんかのスパム投稿を自動識別できたら……」 「サーバの負荷が高まるタイミングを事前に予測できたら……」 一見するとこれらは実現していることがまったく異なりますが、じつはある共通点があります。それは「データを分析し、その結果を活用している」という点です。 Data is Kingの考えから得られるメリット かつてAmazonに在籍していたRonny Kohaviは「Data is King at Amazon」と言い、データの重要性を説きました。事実、Amazonはユーザの購買履歴から商品のレコメンデーションを行い、ユーザのサイト内の遷移履歴やクリック率からサイト構造の改善を行うなど、データを徹底的に活用していることで知られています
ここ数年、私はデータサイエンスについて学んでいます。おすすめの学習資料を紹介したいと思います。 教師用の教科書と初心者用の教科書 私自身、データサイエンスを学ぼうとして色々なソースを試してみました。残念なことに、日本語の良い学習資料は見つけられませんでした。どこかのブログで読んだことがありますが、教科書は教師用と学生用の二週類があるそうです。一つめは内容が既に分かっている教師の為の教科書で、日本はこのタイプです。もう一つのタイプの教科書は自学自習を目的に作られているので、教師なしで学ぶできる教科書になっているということで、アメリカはこのタイプの教科書が多いです。私自身、他の文系・理系の教科書を探した時もアメリカの教科書の方が分かりやすく、その本だけを読めば分かるようになっていると同じ印象を持ちました。 オンライン教育(MOOC) アメリカは科学教育に熱心であり、最近はやりのMOOCでも豊富
マイクロソフトは、機械学習サービスをクラウドで提供する「Microsoft Azure Machine Learning」の公開プレビューを来月から開始すると発表しました。 Microsoft Azure Machine Learning combines power of comprehensive machine learning with benefits of cloud - The Official Microsoft Blog - Site Home - TechNet Blogs 機械学習とは、例えばECサイトでの購買履歴を基にしたおすすめ商品の提示、金融取引での取引分析による不正行為の発見、あるいは工作機械の稼働履歴分析による故障時期予想、などの分野で利用されています。 しかし機械学習を実現するには、まず大規模なデータ分析基盤を構築し、そこに機械学習のアルゴリズムを実装した
6. 各モジュールの役割 l サーバー・クライアント l msgpack-rpcサーバー・クライアントとして振る舞る l だいたい⾃自動⽣生成される l ドライバー l ⽣生データ(⽂文書など)を処理理する層 l 特徴抽出、重み付け、学習を結びつける役割 l コア l ベクトルを受け取る⽣生の学習器 l ベクトルを⽣生成する⽣生の特徴抽出器 l 最近リポジトリを分離離した(jubatus_core) 6
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く