LightGBM は Microsoft が開発した勾配ブースティング決定木 (Gradient Boosting Decision Tree) アルゴリズムを扱うためのフレームワーク。 勾配ブースティング決定木は、ブースティング (Boosting) と呼ばれる学習方法を決定木 (Decision Tree) に適用したアンサンブル学習のアルゴリズムになっている。 勾配ブースティング決定木のフレームワークとしては、他にも XGBoost や CatBoost なんかがよく使われている。 調べようとしたきっかけは、データ分析コンペサイトの Kaggle で大流行しているのを見たため。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.13.4 BuildVersion: 17E202 $ python -V Pyt