タグ

algorithmに関するkataringのブックマーク (50)

  • 人材獲得作戦・4 試験問題ほか - 人生を書き換える者すらいた。

    さて試験問題です。 内容は、壁とスペースで構成された迷路が与えられたとき、スタート地点からゴール地点に至る最短経路を求めよ、というものです。 たとえば、S:スタート G:ゴール *:壁 $:解答の経路 としたとき、 ************************** *S* * * * * * * ************* * * * * ************ * * * * ************** *********** * * ** *********************** * * G * * * *********** * * * * ******* * * * * * ************************** という入力に対し、 ************************** *S* * $$$ * *$* *$$*$ ************

    人材獲得作戦・4 試験問題ほか - 人生を書き換える者すらいた。
  • 加藤 和彦 Kazuhiko KATO, Dr. Prof.

    加藤 和彦 Kazuhiko KATO, Dr. Prof.
  • 第1回 検索エンジンとは | gihyo.jp

    はじめに 検索エンジンと聞くと、みなさんは何を思い浮かべるでしょうか? GoogleYahoo!などの検索ページを思い浮かべる方がほとんどだと思います。近年は、それら企業の努力によって検索エンジンというものが非常に身近になり、私たちの生活に欠かせないものとなりつつあります。 しかし、検索エンジンと一言で言っても、上記のような一般の方々へのUI(ユーザインターフェース)を指す場合もあれば、そのUIの裏側(バックエンド)にあるシステムを指す場合もあります。 連載では、Google,Yahoo!などを代表とする検索エンジンの裏側のしくみに着目し、検索エンジンというシステムのアーキテクチャやその内部で使われているデータ構造やアルゴリズムを、近年の手法や研究事例などを交えて解説していきたいと思っています。 検索エンジンとは 検索エンジンには、さまざまな種類があります。GoogleのWeb検索のよ

    第1回 検索エンジンとは | gihyo.jp
  • 天気予報から機械学習、金融工学まで - DO++

    もう随分経ちますが,先日CompView秋の学校というのに行き,2泊3日みっちり機会学習を勉強してきました.講師陣は豪華でどの話も面白かったのですが特にElad Hazanによる"Prediction in the dark: the multi-armed bandit problem"が非常に面白かったです. その話を説明するために,まず簡単ながら驚くべき性能を達成するアルゴリズムを紹介しましょう. 解きたい問題は,毎日,次の日の天気が晴れか雨かを予想する問題です.t日目が晴れの場合 y(t)=1, 雨の場合 y(t)=0と表すことにしましょう.t日目にy(t+1)を予想するわけです. さて、自分は天気の専門家ではないので,自分で予報せずに,専門家に頼ることにしてみます.M人の天気予報士がいて,それぞれが独自に次の日の天気を予想しています.i人目の天気予報士のt日目の予報をp(i,t)

    天気予報から機械学習、金融工学まで - DO++
  • お手軽転置インデクスを用いた検索エンジン: (1) AND検索編 - シリコンの谷のゾンビ

    突然Cでコードを書きたくなったので,なんちゃって転置インデクスを用いた検索プログラムを書いてみた. 転置インデクスとは,索引語と呼ばれる単語が出現する文書情報 (場合によっては位置情報も) を保持したデータ構造のことで,索引語と,それに対応する転置リストによって構成される. # 索引語 -> 転置リスト hoge -> 5: 1,2,3,4,5 fuga -> 3: 1,4,5 piyo -> 2: 4,5これは,hogeという単語が文書1,2,3,4,5に出現し,fugaという単語が文書1,4,5に出現し,piyoという単語が文書4,5に出現する情報を保持している.最初の5,3,2という数字はそれぞれ索引語がいくつの文書に出現したかという文書頻度 (document frequency; DF) を表している. 検索クエリhogeが入力された場合には,文書1,2,3,4,5を検索結果とし

    お手軽転置インデクスを用いた検索エンジン: (1) AND検索編 - シリコンの谷のゾンビ
  • ぜひ押さえておきたいコンピューターサイエンスの教科書

    僕はバイオインフォマティクスという生物と情報の融合分野で研究を行っています。東大の理学部情報科学科にいた頃は同僚のマニアックな知識に驚かされたものですが、そのような計算機専門の世界から一歩外に出ると、それが非常に希有な環境だったことに気が付きました。外の世界では、メモリとディスクの違いから、オートマトン、計算量の概念など、コンピューターサイエンスの基礎知識はあまり知られていませんでした。コンピューターサイエンスを学び始めたばかりの生物系の人と話をしているうちに、僕が学部時代に受けた教育のうち、彼らに欠けている知識についても具体的にわかるようになってきました。 バイオインフォマティクスに限らず、今後コンピュータを専門としていない人がコンピューターサイエンスについて学ぶ機会はますます多くなると思われます。そこで、これからコンピューターサイエンスを学ぼうとする人の手助けとなるように、基礎となる参

  • アルゴリズムの紹介

    ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意していま

  • PFI で2ヶ月のインターンシップに参加してきた - 肉とビールとパンケーキ by @sotarok

    8月の頭から先週10月2日まで,Preferred Infrastructure (PFI) でインターンシップに参加してきました. 思えばあっという間でしたが,非常に濃い体験をし,多くのものを得た2ヶ月でした. インターンでなにをやったのか,何を得たのか,自分なりにまとめたいと思います.長文ですみません.結局うまくまとまらなかった... エントリー 日記風(w)に,エントリーから振り返りたいと思います.PFIでインターンの募集が始まった,と聞いたのは, @kzk_mover さんか @ichii386 さんの Twitter でのつぶやきからでした. で,まあPFIは太田さんを知ってたりして,素敵な会社だなーと思ってたこともあり,募集要項は「レベルが高い」とTwitterやブクマでも話題だったので受かるかどうか自信はなかったんですが,学生最後の年だし,今年やらなかったらもうインターンもで

    PFI で2ヶ月のインターンシップに参加してきた - 肉とビールとパンケーキ by @sotarok
  • 類似画像検索システムを作ろう - 人工知能に関する断創録

    C++版のOpenCVを使ってカラーヒストグラムを用いた類似画像検索を実験してみました。バッチ処理などのスクリプトはPythonを使ってますが、PerlでもRubyでも似たような感じでできます。 指定した画像と類似した画像を検索するシステムは類似画像検索システムと言います。GoogleYahoo!のイメージ検索は、クエリにキーワードを入れてキーワードに関連した画像を検索しますが、類似画像検索ではクエリに画像を与えるのが特徴的です。この分野は、Content-Based Image Retrieval (CBIR)と呼ばれており、最新のサーベイ論文(Datta,2008)を読むと1990年代前半とけっこう昔から研究されてます。 最新の手法では、色、形状、テクスチャ、特徴点などさまざまな特徴量を用いて類似度を判定するそうですが、今回は、もっとも簡単な「色」を用いた類似画像検索を実験してみます

    類似画像検索システムを作ろう - 人工知能に関する断創録
  • 編集距離 (Levenshtein Distance) - naoyaのはてなダイアリー

    昨日 最長共通部分列問題 (LCS) について触れました。ついでなので編集距離のアルゴリズムについても整理してみます。 編集距離 (レーベンシュタイン距離, Levenshtein Distance) は二つの文字列の類似度 (異なり具合) を定量化するための数値です。文字の挿入/削除/置換で一方を他方に変形するための最小手順回数を数えたものが編集距離です。 例えば 伊藤直哉と伊藤直也 … 編集距離 1 伊藤直と伊藤直也 … 編集距離 1 佐藤直哉と伊藤直也 … 編集距離 2 佐藤B作と伊藤直也 … 編集距離 3 という具合です。 編集距離はスペルミスを修正するプログラムや、近似文字列照合 (検索対象の文書から入力文字にある程度近い部分文字列を探し出す全文検索) などで利用されます。 編集距離算出は動的計画法 (Dynamic Programming, DP) で計算することができることが

    編集距離 (Levenshtein Distance) - naoyaのはてなダイアリー
  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • Hough変換による画像からの直線や円の検出

    はじめに Hough変換は、画像から直線や円を検出する技法として知られています。通常の直交座標上の画像を、極座標の二次元空間(直線検出の場合)に変換したり、三次元の空間(円検出の場合)に変換したりして、そこで最も頻度の高い位置を求め、それを逆変換して、直線や円を検出します。 Hough変換は数学的に興味深く、プログラムの対象として面白いため、多くの論文が見られますが、実用化には多くの問題点もあります。 ここでは最初に、一般的なHough変換の基プログラムを紹介し、次に交通標識認識への応用に特化したプログラムについて述べます。 基図形認識版アプレットを見る 交通標識認識版アプレットを見る 対象読者 画像から直線や円を検出する方法に興味を持ち、その一つであるHough変換の仕組みを学びたい人。 必要な環境 J2SE 5.0を使っていますが、J2SE 1.4.2でも大丈夫です。円のためのHo

    Hough変換による画像からの直線や円の検出
  • moved

    This site has been moved. Please visit the new site.

  • アルゴリズムイントロダクション第24章 単一始点最短路問題 - naoyaのはてなダイアリー

    アルゴリズムイントロダクションの輪講で、第24章の単一始点最短路問題を担当しました。発表に使った資料を以下にアップロードしました。 http://bloghackers.net/~naoya/ppt/090622_shortest_paths.ppt SlideShare はこちら。フォントの関係でグラフが崩れたりしているので、ppt で参照した方が見やすいかと思います。 Introduction to Algorithms#24 Shortest-Paths ProblemView more OpenOffice presentations from Naoya Ito. 単一始点最短路問題は、重み付き有向グラフの最短路木を求める問題です。各頂点に最短路重みを記録するのですが、はじめに各頂点の重みを∞として、「緩和」と呼ばれる操作により徐々に頂点の重みを最短路重みに近づけていく、というの

    アルゴリズムイントロダクション第24章 単一始点最短路問題 - naoyaのはてなダイアリー
  • GitHub - ben-manes/concurrentlinkedhashmap: A ConcurrentLinkedHashMap for Java

    You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert

    GitHub - ben-manes/concurrentlinkedhashmap: A ConcurrentLinkedHashMap for Java
  • Perceptron を手で計算して理解してみる (nakatani @ cybozu labs)

    Perceptron の実装とか見ると、ものすごく簡単なので、当にこれで学習できちゃうの? と不安になってしまいました(苦笑)。 こういうときは、実際にパーセプトロンが計算しているとおりに、紙と鉛筆で計算してみて、期待する結果が出てくることを確認してみたくなります。 参照する教科書は「パターン認識と機械学習・上」(PRML) の「 4.1.7 パーセプトロンアルゴリズム」。 短い節です。必要最低限のことを一通り書いてある感じかな。 計算に用いるサンプルですが、手で計算できる規模でないといけないので、論理演算の AND を試してみることにします。 簡単に勉強 ちゃんとした説明は PRML などを見て欲しいですが、とても簡単にまとめます。 2値の線形識別モデルは、N 次元空間内を (N-1) 次元の超平面(決定面)で分割することで、入力ベクトル x から得られる特徴ベクトル φ(x) が2つ

  • Aho Corasick 法 - naoyaのはてなダイアリー

    適当な単語群を含む辞書があったとします。「京都の高倉二条に美味しいつけ麺のお店がある」*1という文章が入力として与えられたとき、この文章中に含まれる辞書中のキーワードを抽出したい、ということがあります。例えば辞書に「京都」「高倉二条」「つけ麺」「店」という単語が含まれていた場合には、これらの単語(と出現位置)が入力に対しての出力になります。 この類の処理は、任意の開始位置から部分一致する辞書中のキーワードをすべて取り出す処理、ということで「共通接頭辞検索 (Common Prefix Search)」などと呼ばれるそうです。形態素解析Wikipediaはてなキーワードのキーワードリンク処理などが代表的な応用例です。 Aho Corasick 法 任意のテキストから辞書に含まれるキーワードをすべて抽出するという処理の実現方法は色々とあります。Aho Corasick 法はその方法のひと

    Aho Corasick 法 - naoyaのはてなダイアリー
  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • ベイズを学びたい人におすすめのサイト - download_takeshi’s diary

    ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdf PDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ

    ベイズを学びたい人におすすめのサイト - download_takeshi’s diary
  • Google Japan Blog: Google検索ランキングの背景にある技術

    毎週月曜日のエンジニアリングブログの4回目です。今週も検索テクノロジーについて、過去に米国のブログにポストされたもの を日語でお届けします。 前回の投稿で、私は Google 検索ランキングの背景にある理念を紹介しました。今回はサーチクオリティについてお話しする努力の一環として、Google 検索ランキングの背景にある技術についてもう少し詳しく説明したいと思います。私たちのランキングシステムのコアテクノロジーは、情報検索( Information Retrieval または IR )という学問分野に由来しています。IR コミュニティーは、すでに 50 年近くにわたって検索について研究しています。ページのランキングには、単語の登場頻度のような単語の統計的特徴が用いられています※1。私たちは IR という強固な基礎の上に、リンク、ページ構造、その他多くの革新的技術を用いて最高レベルのシステム

    Google Japan Blog: Google検索ランキングの背景にある技術