algorithmに関するkazufsafのブックマーク (73)

  • 経路探索アルゴリズムの「ダイクストラ法」と「A*」をビジュアライズしてみた - てっく煮ブログ

    as詳解 ActionScript 3.0アニメーション ―衝突判定・AI・3DからピクセルシェーダまでFlash上級テクニック を読んでいて、経路探索のアルゴリズムで A* が取り上げられていました。A* については、いろいろ検索して調べたりもしたのですが、やっぱりに書いてあると理解しやすいですね。せっかくなので自分流に実装してビジュアライズしてみました。ダイクストラ法まずは A* の特別なケースでもあるダイクストラ法から見ていきます。クリックすると探索のシミュレーションが開始します。スタート地点(S)からゴール(G)への探索が始まります。色がついたところが「最短経路が決定した場所」です。スタート地点から少しずつ探索が完了していきます。半分ぐらい完了しました。まだまだ進みます。最後まで終わりました。最短経路を黒色矢印で表示しています。ダイクストラ法は、スタート地点から近いノード(=マス

  • アルゴリズムの紹介

    ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意していま

  • Low-Layer Hacks: P2Pアルゴリズム毎のメリット/デメリット

    2009-10-10 P2Pアルゴリズム毎のメリット/デメリット Winny裁判で金子氏に無罪判決が下り、P2Pを実装したアプリケーションは今後増えてくると予想される。そこで、技術者向けにP2P構造化オーバーレイネットワークのアルゴリズム毎におけるメリット/デメリットを簡潔にまとめ、実装にあたり必要となるであろう参考資料を示した。 ・Chord DHT(分散ハッシュテーブル)の一種であるこのアルゴリズムはConsistent Hashingをベースとしており、名前の通り、分散されたコンピュータ間にハッシュテーブルを構築する。このアルゴリズムは多くのシステムに採用されているのでとても信頼性が高く、実装も容易である。 ただ、愚直な実装では耐障害性が低くなるので注意が必要だ。UnbreakableなChordを提案した論文もあるようなので、そういう文献も参考にすると良いかもしれない。 参

  • 類似画像検索システムを作ろう - 人工知能に関する断創録

    C++版のOpenCVを使ってカラーヒストグラムを用いた類似画像検索を実験してみました。バッチ処理などのスクリプトはPythonを使ってますが、PerlでもRubyでも似たような感じでできます。 指定した画像と類似した画像を検索するシステムは類似画像検索システムと言います。GoogleYahoo!のイメージ検索は、クエリにキーワードを入れてキーワードに関連した画像を検索しますが、類似画像検索ではクエリに画像を与えるのが特徴的です。この分野は、Content-Based Image Retrieval (CBIR)と呼ばれており、最新のサーベイ論文(Datta,2008)を読むと1990年代前半とけっこう昔から研究されてます。 最新の手法では、色、形状、テクスチャ、特徴点などさまざまな特徴量を用いて類似度を判定するそうですが、今回は、もっとも簡単な「色」を用いた類似画像検索を実験してみます

    類似画像検索システムを作ろう - 人工知能に関する断創録
  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • ジャンル別ゲームの作り方とアルゴリズムまとめ - ネットサービス研究室

    ゲームの作り方とアルゴリズムをジャンル別にまとめてみました。ゲーム制作や、プログラミングの勉強用にご活用ください。言語別ゲームプログラミング制作講座一覧もあわせてお読みください。 リンク切れがおきていたものは、URLを表示しておくので、Internet Archiveなどでキャッシュを表示させてみてください。 RPG ゲームの乱数解析 乱数を利用した敵出現アルゴリズムの解説 各種ゲームプログラム解析 FF、ドラクエ、ロマサガのプログラムの解析。乱数の計算など ダメージ計算あれこれ(http://ysfactory.nobody.jp/ys/prg/calculation_public.html) ダメージの計算式 エンカウントについて考えてみる エンカウント(マップでの敵との遭遇)の処理方法いろいろ RPGの作り方 - ゲームヘル2000 RPGのアルゴリズム ドルアーガの塔 乱数の工夫の

    ジャンル別ゲームの作り方とアルゴリズムまとめ - ネットサービス研究室
  • クラスタリング (クラスター分析) - Toshihiro Kamishima

    クラスタリング (clustering) とは,分類対象の集合を,内的結合 (internal cohesion) と外的分離 (external isolation) が達成されるような部分集合に分割すること [Everitt 93, 大橋 85] です.統計解析や多変量解析の分野ではクラスター分析 (cluster analysis) とも呼ばれ,基的なデータ解析手法としてデータマイニングでも頻繁に利用されています. 分割後の各部分集合はクラスタと呼ばれます.分割の方法にも幾つかの種類があり,全ての分類対象がちょうど一つだけのクラスタの要素となる場合(ハードなもしくは,クリスプなクラスタといいます)や,逆に一つのクラスタが複数のクラスタに同時に部分的に所属する場合(ソフト,または,ファジィなクラスタといいます)があります.ここでは前者のハードな場合のクラスタリングについて述べます.

    クラスタリング (クラスター分析) - Toshihiro Kamishima
  • 大規模データを基にした自然言語処理 - DO++

    人工知能問題研究会 (SIG-FPAI)でタイトルの題目で一時間ほど話してきました。 発表資料 [pptx] [pdf] 話した内容は - 自然言語処理における特徴ベクトルの作り方と、性質 - オンライン学習, Perceptron, Passive Agressive (PA), Confidence Weighted Learning (CW) 確率的勾配降下法 (SGD) - L1正則化, FOLOS - 索引を用いた効率化, 全ての部分文字列を利用した文書分類 で、スライドで70枚ぐらい。今までの発表とかぶっていないのはPA CW SGD FOLOSあたりでしょうか オンライン学習、L1正則化の話がメインになっていて、その両方の最終形の 確率的勾配降下法 + FOLOSの組み合わせは任意の損失関数に対してL1/L2正則化をかけながらオンライン学習をとても簡単にできるという一昔前

    大規模データを基にした自然言語処理 - DO++
  • 人工無能の作り方

    書いた人 INA 人工無能とは? 人間っぽく話すプログラムのこと。会話を理解しているというよりは、なんかそれっぽいことを話すだけのものが多い。 今回は「日語のようなものを話す人工無能」を作ってみたので、その簡単な仕組みと工夫した点について少し書いてみることにする。 動機 うちのサークルのメンバーがよく集まってるチャット。とてもマニアックな どうしようもない 会話が繰り広げられているわけだが、ちょっと物足りない。 そうだ! 萌キャラがいないじゃないか! 「ないなら作ればいいじゃない?」 材料 MeCab 形態素解析エンジン 難しいことは知らなくても問題ない。 「私は変な人ではない」 ↓ 私 名詞,代名詞,一般,*,*,*,私,ワタシ,ワタシ は 助詞,係助詞,*,*,*,*,は,ハ,ワ 変 名詞,形容動詞語幹,*,*,*,*,変,ヘン,ヘン な 助動詞,*,*,*,特殊・ダ,体言接続,だ,

  • アルゴリズムコンテストの挑み方 (2) - d.y.d.

    21:25 08/10/27 論文 の締め切り終わったら頑張った自分へのご褒美(笑)であれとこれとそれをやる時間をとるぞー! ……みたいなことを思っていたはずなのに、いざ提出し終わると気が抜けて何一つやる気がでない問題。 困った困った。 ナイチル たくさん人がいらしてる今のうちに 「ナイトメア☆チルドレン」新装版 面白いよみんな買おうぜ! などと書いてみる。 自分のマンガの趣味はわりと平凡だと思ってて、 流行ってるマンガは大抵好きだし自分の好きなのはだいたい流行ってるし。 なのになぜだか藤野もやむ作品だけは唯一の例外で、とっても不思議でならない。 100回くらいアニメ化されてて然るべきだと思う。 何回か書いてますがとにかく最終話が好きで、 そこまでのシナリオが一気に集まって一つ一つのセリフが3倍の重みを持つように収斂していく幕引き。 あれは良い。 17:12 08/10/24 アルゴリズム

  • Burrows Wheeler Transform と Suffix Array - naoyaのはてなダイアリー

    ,. -‐'''''""¨¨¨ヽ (.___,,,... -ァァフ|          あ…ありのまま 今日 起こった事を話すぜ! |i i|    }! }} //| |l、{   j} /,,ィ//|       『BWT について調べていたら Suffix Array のライブラリができていた』 i|:!ヾ、_ノ/ u {:}//ヘ |リ u' }  ,ノ _,!V,ハ | /´fト、_{ル{,ィ'eラ , タ人        な… 何を言ってるのか わからねーと思うが /'   ヾ|宀| {´,)⌒`/ |<ヽトiゝ        おれも何をされたのかわからなかった… ,゙  / )ヽ iLレ  u' | | ヾlトハ〉 |/_/  ハ !ニ⊇ '/:}  V:::::ヽ        頭がどうにかなりそうだった… // 二二二7'T'' /u' __ /:::::::/`ヽ /'

    Burrows Wheeler Transform と Suffix Array - naoyaのはてなダイアリー
  • 講義資料 配列解析アルゴリズム特論I 情報生命科学基礎/演習 他 -渋谷哲朗

    平成20年度 東京大学大学院 情報理工学系研究科・コンピュータ科学専攻 配列解析アルゴリズム特論I 4/10 4/17 4/24 5/1 5/8 5/15 5/22 5/29 (The problem to be reported - in English) 6/5 6/12 6/19 7/3 7/10 7/17 東京大学 理学部・情報科学科 情報科学特別講義3 (情報科学とバイオインフォマティクス) 6/10 7/15 7/22 東京大学大学院 新領域創成科学研究科・情報生命科学専攻 情報生命科学基礎/演習 5/27 6/17 京都大学大学院 薬学研究科・医薬創成情報科学専攻 情報科学概論 6/3 中央大学大学院 理工学系研究科・物理学専攻 物理学特別講義第二 TBA 創価大学工学部 生命情報工学科 TBA TBA 戻る Copyright (c) 2004- Tetsuo

  • 工学ナビの中の人の研究と周辺 あのマーカレスARの研究がついにソース公開!

    昨年のISMAR'07でベストペーパーに輝いたGeorg Klein氏の論文 「Parallel Tracking and Mapping for Small AR Workspaces」の ソースコードがついに公開になりました! masayashi君ヨカッタネ! 『攻殻機動隊』『電脳メガネ』どころではない拡張現実感技術の現在 | 王様の箱庭 Parallel Tracking and Mapping for Small AR Worspaces 一度は「ソース公開の話はなかったことに」みたいな展開がありましたが, オックスフォード大学直属の会社との間で権利の整理ができたようで, 非商用ライセンスの下でソースを利用することができます. Georg Klein Home Page http://www.robots.ox.ac.uk/~gk/ ソース配布ページ http://www.robo

  • diffのアルゴリズム - Plan9日記

    ふと見つけた「あなたが一番好きなアルゴリズムを教えてください。また、その理由やどんな点が好きなのかも教えてください」を読んで、diffのアルゴリズムを調べてみた。2つのファイルの違いを見つけるには、共通する部分が最長になるペアを見つければよい。これはLCS (Longest Common Subsequence)問題と呼ばれる。LCS問題の最適解は動的計画法を用いて求めることができるが、計算時間、メモリ使用量ともにO(MN)になる*1。これより早く、また小メモリで実行できるようにいろいろなアルゴリズムが提案されている。 テキストを比較するdiffというUnix系のコマンドがありますが、これは実は高度に数学的なエディットグラフというアルゴリズムが使われています。 [1] E.W.Myers, "An O(ND) difference algorithm and its variations"

    diffのアルゴリズム - Plan9日記
  • DO++: 機械学習による自然言語処理チュートリアル

    自然言語処理のときに使う機械学習手法のテクニックをざーっと2時間程度で紹介してほしいとのことだったので今日話してきました。基的に、そんなに頑張らなくても効果が大きいものを中心に説明(特にパーセプトロンとか)を説明してます。 紹介した手法はパーセプトロン、最大エントロピー、正則化、多クラス分類、系列分類(CRF, Structured Perceptron)などなどです。どれも一かじりする感じで網羅的に見る方を優先してます。個々の詳しい話はそれぞれの文献や実装などを当たってみてください。 スライド [ppt] [pdf] ここで話しているのは線形識別モデルの教師有り学習が中心で教師無し学習(クラスタリングなど)など他の自然言語処理を支える技術は省いてます。 こういうのを使って(使わなくてもいいけど)どんどんアプリケーション作らないといかんね。 Tarot is not used to ma

    DO++: 機械学習による自然言語処理チュートリアル
  • GoogleのMapReduceアルゴリズムをJavaで理解する

    GoogleMapReduceアルゴリズムをJavaで理解する:いま再注目の分散処理技術(前編)(1/2 ページ) 最近注目を浴びている分散処理技術MapReduce」の利点をサンプルからアルゴリズムレベルで理解し、昔からあるJava関連の分散処理技術を見直す特集企画(編集部) いま注目の大規模分散処理アルゴリズム 最近、大規模分散処理が注目を浴びています。特に、「MapReduce」というアルゴリズムについて目にすることが多くなりました。Googleの膨大なサーバ処理で使われているということで、ここ数年の分散処理技術の中では特に注目を浴びているようです(参考「見えるグーグル、見えないグーグル」)。MapReduceアルゴリズムを使う利点とは、いったい何なのでしょうか。なぜ、いま注目を浴びているのでしょうか。 その詳細は「MapReduce : Simplified Data Proc

    GoogleのMapReduceアルゴリズムをJavaで理解する
  • ガベージコレクションの実装法と評価

    1.はじめに プログラミング言語とはシステム化する対象物を抽象化し、コンピュータで処理可能なコードを記述するために用いる人工言語である。プログラミング言語はコンピュータの機械語と一対一の対応をもったアセンブラから始まり、コンパイラを用いて機械語に翻訳することを前提としたコンパイラ言語、インタプリタと呼ばれるプログラムがソースコードを解釈し実行するスクリプト言語と、記述できる抽象度を高める方向へと進化してきた。 プログラミング言語はその存在理由から、より抽象度の高い記述が行えること、すばやい開発を行える事が求められる。抽象度の高い記述とは、プログラムがどういう処理を行うか(HOW)ではなく何の処理を行うか(WHAT)を記述しやすい構文、機能を持っていることを、すばやい開発とは記述性の高さ、コードの密度の高さ、バグの発生しにくい構文、機能を持っていることをさす。 この抽象度の高い記述、すばやい

  • 連載:検索エンジンを作る|gihyo.jp … 技術評論社

    運営元のロゴ Copyright © 2007-2024 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    連載:検索エンジンを作る|gihyo.jp … 技術評論社
  • 覆面していても顔認識できる新しいアルゴリズム | WIRED VISION

    覆面していても顔認識できる新しいアルゴリズム 2008年3月26日 サイエンス・テクノロジー コメント: トラックバック (0) Bryan Gardiner Allen Yang氏の顔認識アルゴリズムを使うと、たとえ画像が破損していたり、部分的にさえぎられていても、該当する人物を的確に見つけ出すことが可能だ。Photo: Allen Yang 忍者の覆面はもう意味がない。カリフォルニア大学バークレー校とイリノイ大学アーバナ・シャンペーン校(UIUC)の研究者たちが開発した新しい顔認識アルゴリズムは、たとえ目、鼻、口の部分が不明瞭でも、90%から95%の正確さで個人の顔を認識できるのだ。 「多くのアルゴリズムでは、目、鼻、口といったいわゆる重要な顔の特徴を使って個人を確認している」と、新しいアルゴリズムを開発したバークレー校工学部の研究者Allen Yang氏は述べる。 「しかし、それだと

  • mixi Engineers’ Blog » スマートな分散で快適キャッシュライフ

    今日は以前のエントリーで書くと述べたConsistent Hashingに関して語らせて頂こうかと思います。ただしConsistent Hashingはセミナーやカンファレンスなどでかなり語られていると思いますので、コンセプトに関しては深入りせず、実用性に着目したいと思います。 問題定義 分散されたキャッシュ環境において、典型的なレコードを適切なノードに格納するソリューションはkeyのハッシュ値に対しmodulo演算を行い、その結果を基にノードを選出する事です。ただし、このソリューションはいうまでもなく、ノード数が変わるとキャッシュミスの嵐が生じます。つまり実世界のソリューションとしては力不足です。 ウェブサイトのキャッシュシステムの基はキャッシュがヒットしなかったらデータベースにリクエストを発行し、レコードが存在したらキャッシュしてクライエントに返すという流れです。ここで問題なのが一瞬

    mixi Engineers’ Blog » スマートな分散で快適キャッシュライフ