タグ

ブックマーク / data.gunosy.io (12)

  • 2019年のGunosy研究開発チームの振り返りとこれから - Gunosyデータ分析ブログ

    はじめに こんにちは、研究開発チームの関です。 いつのまにやら年末感が漂ってきましたね。今年もクリスマスは赤レンガ倉庫でカップルたちの中アイドルライブを見て過ごしました。*1 年越しはCDJででんぱ組と年越しを迎えるので、クリスマスも年越しも推しと過ごせて幸せです。 さて、この記事はGunosy Advent Calendar 2019の21日目の記事です。*2 この記事では研究開発チームのこの1年の振り返りと、今後について書いて行こうと思います。 自分なりの整理や、社内広報の役割も兼ねています。 はじめに 2018年までの研究開発 2019年の主な活動 業績 学会・研究会への参加 参加した国際学会(いずれも発表参加) 参加した国内学会・研究会 スポンサーした学会 参加レポート 大学での講義 ウェブ工学とビジネスモデル ウェブサービスにおけるデータ分析機械学習 2019年の振り返り よか

    2019年のGunosy研究開発チームの振り返りとこれから - Gunosyデータ分析ブログ
    knok
    knok 2019/12/26
    gunosy, sansan, smartnewsはNLP頑張ってる印象
  • A/Bテストのベストプラクティスと落とし穴 ~KDD2019 レポート~ - Gunosyデータ分析ブログ

    はじめに 研究開発チームの関です。古川未鈴さんの結婚、ニジマス大門果琳さんの卒業、uijinの解散とアイドル業界も激動の秋を迎えていますね。 2019年8月4日から5日間、アメリカはアラスカ州アンカレッジで開催されたデータマイニング領域のトップカンファレンスであるKDD2019にGunosyから北田と関が参加・発表してきました。 これまでに2つのレポートを公開しています。 data.gunosy.io data.gunosy.io レポートではTutorialとして開催された「Challenges, Best Practices and Pitfalls in Evaluating Results of Online Controlled Experiments」の内容をレポートします。 内容は現在のA/Bテストのガイドラインと言ってもいい内容で、非常に参考になるポイントが多かったです。

    A/Bテストのベストプラクティスと落とし穴 ~KDD2019 レポート~ - Gunosyデータ分析ブログ
    knok
    knok 2019/10/03
  • 公平性および説明性を考慮した機械学習 in KDD2019 - Gunosyデータ分析ブログ

    研究開発チームインターンの北田 (shunk031) です。アメリカのアラスカにて行われたKDD2019に参加・発表してきました。 www.kdd.org KDD2019 のチュートリアルやワークショップ、キーノートの中でFairness (公平性) および Explainability (説明性) にフォーカスした以下のものを聴講したので概要をまとめたいと思います。 チュートリアル Fairness-Aware Machine Learning: Practical Challenges and Lessons Learned Explainable AI in Industry ワークショップ Explainable AI/ML (XAI) for Accountability, Fairness, and Transparency キーノート Do Simpler Models Ex

    公平性および説明性を考慮した機械学習 in KDD2019 - Gunosyデータ分析ブログ
    knok
    knok 2019/09/26
  • 双曲空間ではじめるレコメンデーション - Gunosyデータ分析ブログ

    はじめに こんにちは、MediaAds ML Teamに所属している飯塚(@zr_4) です。 以前書いたブログ*1をベースに変更を加えた論文がRecSys 2019 *2 に通りました(ヤッター)。 埋め込みベースの推薦は、近年最も成功を収めた推薦手法の一つです。 埋め込みベースの推薦を行っている多くの大企業では、精度良くアイテムやユーザーを表現するため、数百次元のベクトルを使用しています。それによって、莫大な計算リソースを日々消費していることと思います。またリアルタイムにベクトルの演算を行うために検索システムを自作している企業も少なくないと思います*3。負荷の大きさから、特定のロジックの実装に踏み込めないケースも多々あるかと思います。 一方で近年、埋め込みの空間に双曲空間を用いることで、階層構造、木構造、Directed Acyclic Graph (DAG) が低次元のベクトルで表現

    双曲空間ではじめるレコメンデーション - Gunosyデータ分析ブログ
  • 言語処理学会第25回年次大会(NLP2019)に一般発表とスポンサーで参加しました - Gunosyデータ分析ブログ

    こんにちは、研究開発チームの関です。 でんぱ組.incの推しである相沢梨紗さんと、妄キャリの推しだった桜野羽咲さんのコラボユニットが格的に活動を開始しました。 生きてるといいことありますね。ステージ上の目のやり場に困っています。 今回3/12 ~ 3/15に名古屋大学で開催された言語処理学会第25回年次大会に一般発表とスポンサーとして参加しました。 言語処理学会年次大会へのスポンサーは今年で4年目になりますが、一般発表は初めてになります。 (昨年は論文賞をいただき、招待講演をさせていただいておりました。) data.gunosy.io 一般発表 一般発表では、Gunosyで研究開発チームでインターンをしている北田 (shunk031) が「広告クリエイティブ自動生成にむけたマルチタスク学習とConditional AttentionによるCVR予測」という題目で発表を行いました。予稿はこ

    言語処理学会第25回年次大会(NLP2019)に一般発表とスポンサーで参加しました - Gunosyデータ分析ブログ
    knok
    knok 2019/04/05
  • DeepなFactorization Machinesの最新動向 (2018) - Gunosyデータ分析ブログ

    はじめに こんにちは。研究開発チームの関です。 最近毎週日曜日の恋するワンピースの更新を楽しみに生きています。好きなツッコミは「この船の航海士は誰?」です。 あと虹のコンキスタドールのベストアルバム「THE BEST OF RAINBOW」は皆さん買いましたか? 健康にいいので毎日聞きましょう。 この記事はGunosy Advent Calendar 2018の22日目の記事です。 昨日はcou_zさんの「【年末年始に読みたい】Gunosyエンジニアが2018年に購入した書籍まとめ」でした。 皆さんFactorization Machinesは好きですよね。 予測モデル構築においてはXGBoostと並んでとりあえずやっておくべき手法として知られています。 今回のエントリではKDD2018で発表されたxDeepFMを読み解きながら、 DeepなFactorization Machineの現状

    DeepなFactorization Machinesの最新動向 (2018) - Gunosyデータ分析ブログ
    knok
    knok 2018/12/29
  • NLP若手の会 (YANS 2018) で発表 & スポンサーしました - Gunosyデータ分析ブログ

    こんにちは。データ分析部アルバイトの北田 (shunk031) です。最近よく聞く曲は「高速に回転するGPUファン」の曲です。 8月27日から8月29日の期間で開催されたNLP若手の会 (YANS) @ 香川県高松市に、Gunosyから関、久保、北田の3名で参加してきました。 YANS2018 スポンサー・ポスター発表 Gunosyにおける自然言語処理・機械学習への取り組み ポスター発表 広告クリエイティブ自動生成に向けた単語レベルでの評価手法の検討 ポスター紹介 クリックベイトの基礎研究における既存データセットの検証 テキスト平易化における難易度の制御 五感に基づく言語表現における個人のバイアスとその補正 画像から抽出した複数種の特徴量を組み込んだニューラル機械翻訳の検討 スタイル変換のためのリファレンスなし
教師あり学習 番外編 うどん & デザート紹介 中西うどん 手打ち十段うどんバ

    NLP若手の会 (YANS 2018) で発表 & スポンサーしました - Gunosyデータ分析ブログ
    knok
    knok 2018/09/28
  • いまさら聞けない機械学習の評価関数 - Gunosyデータ分析ブログ

    アライアンス事業開発部の大曽根(@dr_paradi)です。 ニュースパスというアプリの分析と開発を行っております。 今回は機械学習の評価関数のお話をします。 内容は、【FiNC×プレイド】Machine Learning Meetup #1 - connpassで発表したものになります。 発表資料 いまさら聞けない機械学習の評価指標 from 圭輔 大曽根 www.slideshare.net 機械学習における評価 現在は機械学習ライブラリが充実しており、また、Webサービスの普及により学習に必要なデータの獲得も以前と比較して容易になっています。 そのため、機械学習のビジネス利用への敷居が下がっています。 予測や分類といった問題を解く際には、設定した課題に対してどのモデルが最も適しているかを評価するための指標(評価関数)が必要になります。 Kaggle*1などのコンペティションではあらか

    いまさら聞けない機械学習の評価関数 - Gunosyデータ分析ブログ
    knok
    knok 2018/07/13
  • 言語処理学会第24回年次大会(NLP2018)に参加 & 論文賞受賞しました - Gunosyデータ分析ブログ

    はじめまして、データ分析部の小澤(id:skozawa)です。 3月12日(月)〜3月16日(金)に開催された言語処理学会第24回年次大会(NLP2018) @岡山コンベンションセンターに、Gunosyから、関、久保、茂木、桾澤(インターン生)、小澤の5名で参加しました。 スポンサー発表 今回、Gunosyはゴールドスポンサーとして参加し、スポンサーブースでは、Gunosyにおける自然言語処理や機械学習を活用した取り組みについて、ポスター発表しました。 具体的には、以下のような発表をしました。 記事・動画閲覧ログを利用したニュース・動画配信の最適化 記事・動画閲覧ログを利用した広告配信の最適化 クリックベイトの分析 クリックされやすいがユーザの満足度を伴わないコンテンツの調査・定量化 DEIM 2018でも発表(タイトルと画像が一致しないニュース記事による クリックベイトの文析, 関, D

    言語処理学会第24回年次大会(NLP2018)に参加 & 論文賞受賞しました - Gunosyデータ分析ブログ
    knok
    knok 2018/03/27
    紹介されている論文読んでみよう
  • アプリログの自動異常検知を試してみた~密度比による異常検知入門~ - Gunosyデータ分析ブログ

    Gunosyデータ分析部アルバイトの鈴木です。今回は密度比を利用したバージョンリリースにおける異常検知について学んだことをまとめたいと思います。 やりたいこと 超長期的にやりたいこと 密度比を用いた異常検知のイメージ ダミーデータでの実装例1 今回試したやり方 今後試していくやり方 ダミーデータでの実装例2 密度比の平均二乗誤差を用いる場合 直接密度比推定する場合 参考資料 やりたいこと ニュースパス(Gunosyの提供するプロダクトの一つ)をバージョンアップした時に、もし異常があればユーザーアクションログからその兆候を見つけてslackなどに通知できるようにすることが目標です。 (QA項目以外でのログ欠損やアップデートによる予期せぬユーザ行動の検知をするためです。) 現在Gunosyでは、バージョンアップ時に異常がないかどうか調査するために人手を割いています。しかし、もし自動で異常を確実

    アプリログの自動異常検知を試してみた~密度比による異常検知入門~ - Gunosyデータ分析ブログ
    knok
    knok 2018/01/12
  • Gunosy における AWS 上での自然言語処理・機械学習の活用事例: AWS Summit dev day 2017 - Gunosyデータ分析ブログ

    はじめに こんにちは。Gunosyデータ分析部の大曽根(@dr_paradi) です。最近はJOHN TROPEA BAND featuring STEVE GADD etcのライブを観に行きました。 業務では主にニュースパスのユーザ行動分析、記事配信アルゴリズム開発全般を担当しています。 先日開催されました、AWS Dev Day Tokyo 2017において、「Gunosy における AWS 上での自然言語処理・機械学習の活用事例」というタイトルで発表してきましたので、その内容について簡単ですが書きたいと思います。 はじめに 発表内容 記事分類 属性推定 + スコアリング 属性推定 スコアリング 効果測定 (ABテスト) おわりに 発表内容 私が発表した内容は下記のスライドにまとまっています。弊社が提供するサービスのニュースドメインのもの(グノシー、ニュースパス)における処理の流れを大

    Gunosy における AWS 上での自然言語処理・機械学習の活用事例: AWS Summit dev day 2017 - Gunosyデータ分析ブログ
    knok
    knok 2017/07/06
  • 【これからの強化学習】 Gunosy データマイニング研究会 #118 を実施しました - Gunosyデータ分析ブログ

    gunosy-dm.connpass.com こんにちは。グノシー開発部のアルシャマンです。最近は、KID FRESINOのSalve feat. JJJをよく聴いています。 今日は4/12(水)に開催したGunosy DM #118について紹介します。前回に引き続きこれからの強化学習の1.3~1.5節の輪読と、論文紹介を行いました。 Gunosy DMとこれからの強化学習については、以下のブログ記事で紹介しています。 data.gunosy.io 書籍輪読(これからの強化学習) データ分析部の大曽根と吉田からそれぞれ1.3~1.4節と1.5節についての発表がありました。 1.3節では、MDP(マルコフ決定過程)における価値関数の表現と、それを推定するアルゴリズムについて学びました。具体的には、ある方策πのもとでの行動価値関数について成立する再帰式であるベルマン方程式とSarsaという学習

    【これからの強化学習】 Gunosy データマイニング研究会 #118 を実施しました - Gunosyデータ分析ブログ
    knok
    knok 2017/04/18
  • 1