Supervised Learning of Universal Sentence Representations from Natural Langua...

Amazon.comはディープラーニングを実現するライブラリ「Amazon DSSTNE」(Deep Scalable Sparse Tensor Network Engineの頭文字、読みはデスティニー)をオープンソースで公開しました。 GitHub - amznlabs/amazon-dsstne: Deep Scalable Sparse Tensor Network Engine (DSSTNE) is an Amazon developed library for building Deep Learning (DL) machine learning (ML) models DSSTNEは本番環境のワークロードに対応したライブラリで、以下の特長があります。 マルチGPUスケール 学習と予測のどちらも、複数のGPUにスケールアウトし、レイヤごとにモデル並列化の方法で(model-
1ヶ月ほど前にGoogleから公開されたTensorFlowですが、TensorFlow.orgのチュートリアルをひととおり試してみたものの、その本質的理解がなかなか進まずに自分独自の利用に歩みが進まないケースが散見されます。私も現在学習中なのですが、自分が前に進むうえで理解の整理に役に立ったことを共有します。「そんなことは知っている」という方もいらっしゃるとは思いますがご容赦ください。 TensorFlowの最初の利用方法紹介である「GET STARTED」では「y = 0.1 x + 0.3」という数式を使って生成したxとyを学習データとして、y = W x + b という数式のWとbを最適化していく事例が掲載されています(下記URL)。 https://www.tensorflow.org/versions/master/get_started/index.html この事例はx,
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Hadoop Conference Japan 2016 もともとは2月8日に開催されるHadoop Conference Japan 2016のセッションとしてこの話を応募したのですが、あえなく落選しました……(;_;) しかし、ありがたいことに復活戦のLightning Talkの投票では5位に選んでいただき、ランチタイムA会場でお話することになりました。ありがとうございます! 今回のスライドはここで公開しています。 とはいえ、5分のLTではこの内容をしっかりと伝えられる自信がないので、以下でスライド内容の詳しい解説をしたいと思いま
最近、畳み込みニューラルネットワークを使ったテキスト分類の実験をしていて、知見が溜まってきたのでそれについて何か記事を書こうと思っていた時に、こんな記事をみつけました。 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp 畳み込みニューラルネットワークを自然言語処理に適用する話なのですが、この記事、個人的にわかりやすいなと思ったので、著者に許可をもらって日本語に翻訳しました。なお、この記事を読むにあたっては、ニューラルネットワークに関する基礎知識程度は必要かと思われます。 ※日本語としてよりわかりやすく自然になるように、原文を直訳していない箇所もいくつかありますのでご了承ください。翻訳の致命的なミスなどありましたら、Twitterなどで指摘いただければすみやかに修正します。 以下
先日、九工大や東工大などの学生さんが LINE Fukuoka に遊びにきてくれました。せっかく学生さんが遊びに来てくれるので LINE Fukuoka の社員と学生さんとで LT 大会をやろうという運びになって、学生さんは普段やっている研究内容を、LINE Fukuoka 側はなんでも良いので適当な話を、それぞれやりました。当日は私を含む LINE Fukuoka の社員 3 人と、学生さん 2 人の合計 5 人が LT をしました。詳細は LINE Fukuoka 公式ブログに書かれていますので、興味のある方は御覧ください。 [社外活動/報告] 学生を招いてのエンジニア技術交流会を開催しました。 LT に使った資料は公開してもいいよ、とのことだったので、せっかくなので公開。当日はテキスト分類のデモをやったのですが、残念ながらデモ環境までは公開できませんでした。ただ、ソースコードは gi
最近、畳み込みニューラルネットワークを使ったテキスト分類の実験をしていて、知見が溜まってきたのでそれについて何か記事を書こうと思っていた時に、こんな記事をみつけました。 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp 畳み込みニューラルネットワークを自然言語処理に適用する話なのですが、この記事、個人的にわかりやすいなと思ったので、著者に許可をもらって日本語に翻訳しました。なお、この記事を読むにあたっては、ニューラルネットワークに関する基礎知識程度は必要かと思われます。 ※日本語としてよりわかりやすく自然になるように、原文を直訳していない箇所もいくつかありますのでご了承ください。翻訳の致命的なミスなどありましたら、Twitterなどで指摘いただければすみやかに修正します。 以下
畳み込みニューラルネットワーク (Convolutional Neural Network) を勉強するため、MNISTのデータの識別をライブラリ(Caffeやcuda-convnetなど)を使用せず一から実装してみましたが、ここでは備忘録として書いていくことにします。 出来る限り理解し易いように書いていくように努力はします。(^_^;; おかしな点があれば教えてください。お願いします。 まずは二値分類 多次元の入力データから、それが識別対象かそうでないか(例えば画像から人かそうでないか)といった二値分類の学習を考えます。 入力を\(n\)次元の\(\mathbf{x}=(x_1\ x_2\ \dots\ x_n)^\text{T}\)*1、重みを\(\mathbf{w}=(w_1\ w_2\ \dots\ w_n)^\text{T}\)とし、これら入力と重みを掛け合わせたものとバイアス\
TensorFlowとは2015/11/9にオープンソース化されたGoogleの機械学習ライブラリです。この記事ではディープラーニングと言われる多層構造のニューラルネットワークをTensorFlowを利用して構築しています。 TensorFlowはPythonから操作できますがバックエンドではC++で高速に計算しています。macのPython2.7系環境でTensorFlowの上級者用チュートリアルを行い、手書き認識率99.2%の多層構造の畳み込みニューラルネットワークモデルの分類器を構築したときの作業メモです。特別な設定なしにCPU使用率270%メモリ600MByteとちゃんと並列計算してくれました。MNISTランキングを見ると認識率99.2%は上位のモデルとなるようです。 TensorFlowチュートリアル TensorFlowの初心者用と上級者用チュートリアル2つに取り組んでみました
Googleは、脳の活動を模したニューラルネットワークによって学習を実現する「ディープラーニング」をサポートした機械学習ライブラリ「TensorFlow」をオープンソースで公開しました。ライセンスはApache 2.0オープンソースラインセンスです。 Googleはすでに数年前からディープラーニングを同社のサービスに組み込んでいます。「私たちが社内でディープラーニングの基盤である「DistBelief」を開発したのは2011年のことだ」(ブログ「TensorFlow - Google’s latest machine learning system, open sourced for everyone」から)。 TensorFlowは、このDistBeliefをさらに強化したものだと説明されています。 TensorFlow is general, flexible, portable, e
連載目次 最近注目を浴びることが多くなった「Deep Learning(ディープラーニング)」と、それを用いた画像に関する施策周りの実装・事例について、リクルートグループにおける実際の開発経験を基に解説していく本連載。前回の「ニューラルネットワーク、Deep Learning、Convolutional Neural Netの基礎知識と活用例、主なDeep Learningフレームワーク6選」では、ニューラルネットワーク、Deep Learning、Convolutional Neural Netの基礎知識と活用例、主なDeep Learningフレームワークを紹介しました。今回は、リクルートグループで画像解析において積極的に利用しているフレームワーク「Caffe」を中心にDeep Learningを利用した画像解析について解説します。 最初に、画像解析で実施している「物体認識」の概要を紹
Autogradという野郎が乗り込んできました。はい、そりゃもういきなり。複雑な確率モデルや損失関数だとしても、パラメータに関する勾配をこれでもかというぐらい簡単に計算できちゃうので、機械学習の世界に大きな影響を与えそうです。現時点では、PythonとTorchでの実装が公開されているようですが、これからJuliaなど他の言語でも実装されていきそうですね。 (補足:この記事を書いたすぐ後にGoogleがTensorFlowなるものを出してきまして、そちらでも自動微分がしっかり実装されてるみたいです〜。機械学習関連のフレームワークは移り変わりが激しいですねー ^^; ) ちなみに始まりはこんな感じでした。 ゆるいですね。 とりあえずチュートリアルやりながら、Python版チュートリアルの前半部分にテキトーな日本語訳をつけたので、ここでシェアしておきます。英語が読める方は、僕のヘンテコな日本語
連載目次 本連載では、最近注目を浴びることが多くなった「Deep Learning」と、それを用いた画像に関する施策周りの実装・事例について、リクルートグループにおける実際の開発経験を基に解説していきます。 第1回では、Deep Learningと、それを用いた背景に関して、第2回では、Deep Learningを実装する際に用いたフレームワークである「Caffe」に関して、その構築手法や使い方に関して解説し、第3回では、リクルートグループにおける施策事例に関して、より詳細に述べていきます。第4回では、判別精度のチューニングや、「Active Learning」を用いた継続的精度向上など独自の開発ポイントなどを記載していく予定です。 ニューラルネットワークとは、ディープラーニングとは ここに一枚の画像があります。この画像を見たとき、あなたはとっさにどう判断したでしょうか。 このように脳内の
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く