タグ

DeepLearningとpythonに関するkoda3のブックマーク (7)

  • 東大のディープラーニング公開講座がヤバくていろいろ考えさせられた件|加藤貞顕

    1カ月ほど前から、東京大学の松尾研のディープラーニング公開講座に行っている。 ネットで募集していたのであわてて申し込んだら、とんでもない数の人が集まっていて熱気がすごい。学部生、院生、社会人、あわせて300人以上が同時に授業を受けている。 初回こそ、人工知能概論のような話だったけれど、2回目以降はものすごい速度で授業が進む。そして宿題の量と質もすごい。2回と3回目の授業だけで、普通の学校の半年分くらいの内容になっている気がする。東大、ほんとにやべーよ。 毎回、授業の冒頭は「ふんふん、そうか」とはじまるのだけれど、終わり間近に大量のサンプルコードを見せられて、それをすごい勢いで説明され、最後にゴツイ宿題が出る。授業終了後は、ポカーンってなる(授業中にぜんぶ理解しているひと、どれくらいいるんだろう)。 友人の物書堂の社長の広瀬くん(iPhone辞書アプリ開発の大御所!)も、たまたまいっしょに講

    東大のディープラーニング公開講座がヤバくていろいろ考えさせられた件|加藤貞顕
  • 超素人による『ゼロから作るDeep Learning』の感想。 - D'ac

    最近、ようやく勉強する時間が取れるようになりました。 先週末も夫に子どもを丸投げして、仕事に行き、帰ったら勉強。 これで夫が事の準備をしてくれたら完璧なんだけれど…。贅沢言ったらあかんですね。 さてさて、そんな感じで最近取り組んでいる『ゼロから作るDeep Learning』の感想をまとめておきます。 まだ途中ですが、そろそろ娘が冬休みなのと、の発作がひどくなっていっているので、また時間がなくなりそうなので…。 *以下は初学者の感想です。まだ深いところとかあんまり理解できていません。同じようにDeepLearning興味あるけど、プログラミングの知識もあんまりない中で、どこから始めたらいいかな…みたいな人はぜひ読んでいってください。 『ゼロから作るDeep Learning』感想。 まだ終わっていませんが、全体的に平易に書かれており、私のような初学者でも今のところ投げ出さず取り組めてい

    超素人による『ゼロから作るDeep Learning』の感想。 - D'ac
  • Pythonによる機械学習入門 ~Deep Learningに挑戦~

    EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monoc... 第11回全日コンピュータビジョン勉強会(前編)での発表資料です。以下論文の解説です。 Hansheng Chen et al., "EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation," CVPR2022.

    Pythonによる機械学習入門 ~Deep Learningに挑戦~
  • pythonでニューラルネットワーク実装 - Qiita

    はじめに pythonで3層のニューラルネットワークを実装し,XNORの識別をしてみました. 数式も載せたので,興味のある方は読んでみてください. 教科書として『深層学習』を使いました. 記事の構成 はじめに ニューラルネットワーク 重みの更新 誤差逆伝播 XNOR pythonでの実装 結果 おわりに ニューラルネットワーク ニューラルネットワークとは,人間の脳の神経回路を模したモデルです.このモデルを使うことで,画像認識や音声認識が可能となります. 今回実装したネットワークは入力層,中間層(1層),出力層の3層構造です. 重みの更新 下の図で説明していきます. $l-1$ 層目の $i$ 番目のユニットから $l$ 層目の $j$ 番目のユニットへの重みを $w_{ji}^{(l)}$ とします. また,$l-1$ 層目の $i$ 番目のユニットが保持している値を $u_{i}^{(

    pythonでニューラルネットワーク実装 - Qiita
  • TensorFlow 畳み込みニューラルネットワークで手書き認識率99.2%の分類器を構築 - Qiita

    TensorFlowとは2015/11/9にオープンソース化されたGoogle機械学習ライブラリです。この記事ではディープラーニングと言われる多層構造のニューラルネットワークをTensorFlowを利用して構築しています。 TensorFlowはPythonから操作できますがバックエンドではC++で高速に計算しています。macPython2.7系環境でTensorFlowの上級者用チュートリアルを行い、手書き認識率99.2%の多層構造の畳み込みニューラルネットワークモデルの分類器を構築したときの作業メモです。特別な設定なしにCPU使用率270%メモリ600MByteとちゃんと並列計算してくれました。MNISTランキングを見ると認識率99.2%は上位のモデルとなるようです。 TensorFlowチュートリアル TensorFlowの初心者用と上級者用チュートリアル2つに取り組んでみました

    TensorFlow 畳み込みニューラルネットワークで手書き認識率99.2%の分類器を構築 - Qiita
  • 【機械学習】ディープラーニング フレームワークChainerを試しながら解説してみる。 - Qiita

    今話題のDeep Learning(深層学習)フレームワーク、Chainerに手書き文字の判別を行うサンプルコードがあります。こちらを使って内容を少し解説する記事を書いてみたいと思います。 (記事のコードの全文をGitHubにアップしました。[PC推奨]) とにかく、インストールがすごく簡単かつ、Pythonが書ければすぐに使うことができておすすめです! Pythonに閉じてコードが書けるのもすごくいいですよね。 こんな感じのニューラルネットワークモデルを試してみる、という記事です。 主要な情報はこちらにあります。 Chainerのメインサイト ChainerのGitHubリポジトリ Chainerのチュートリアルとリファレンス 1. インストール# まずは何はともあれインストールです。ChainerのGitHubに記載の"Requirements" ( https://github.c

    【機械学習】ディープラーニング フレームワークChainerを試しながら解説してみる。 - Qiita
  • Pythonとdeep learningで手書き文字認識

    Several recent papers have explored self-supervised learning methods for vision transformers (ViT). Key approaches include: 1. Masked prediction tasks that predict masked patches of the input image. 2. Contrastive learning using techniques like MoCo to learn representations by contrasting augmented views of the same image. 3. Self-distillation methods like DINO that distill a teacher ViT into a st

    Pythonとdeep learningで手書き文字認識
  • 1