タグ

pythonとRに関するkoma_gのブックマーク (5)

  • Pythonプログラマが30分でわかるR - Qiita

    Pythonで統計処理をしているが、Rでコードを書いたことがない方々のために、30分から1時間で読めるR入門を書きました。この記事の R Markdown 文書と実行環境は、こちらの GitHubレポジトリ にあります。 目次 準備 プログラミング言語Rの基型 演算 Assertion ベクトルの要素数とrange リスト DataFrame (tibble) Matrix 関数 いろいろな処理と込み入った話題 文字列処理 強制型変換 等差数列 集合演算 日時と時刻 クラス 参照渡しと copy-on-modify デフォルト値 Assertionで実行を止める コマンドライン引数を解析する CSVファイルを読んで集計する ディレクトリを作る CSVファイルを読む グラフを描く CSVファイルを加工する それぞれの行を集計する それぞれの列を集計する 行をグループ化する カテゴリ変

    Pythonプログラマが30分でわかるR - Qiita
  • R vs Python:データ解析を比較 | POSTD

    主観的な観点からPythonとRの比較した記事は山ほどあります。それらに私たちの意見を追加する形でこの記事を書きますが、今回はこの2つの言語をより客観的な目線で見ていきたいと思います。PythonとRを比較をしていき、同じ結果を引き出すためにはそれぞれどんなコードが必要なのかを提示していきます。こうすることで、推測ではなく、それぞれの言語の強みと弱みの両者をしっかりと理解できます。 Dataquest では、PythonとRの両方の言語のレッスンを行っていますが、データサイエンスのツールキットの中では両者ともそれぞれに適所があります。 この記事では、NBA選手の2013/2014年シーズンの活躍を分析したデータセットを解析していきます。ファイルは ここ からダウンロードしてください。解析はまずPythonとRのコードを示してから、その後に2つの異なるアプローチを解説し議論していきます。つま

    R vs Python:データ解析を比較 | POSTD
  • Pythonや機械学習、そして言語の競争について – 極めて主観的な見地から | POSTD

    (訳注:2016/1/5、いただいた翻訳フィードバックを元に記事を修正いたしました。) よくある主観的で痛烈な意見を題名に付けたクリックベイト(クリック誘導)記事だろうと思われた方、そのとおりです。以前指導してくれた教授から教わったある洞察/処世術は、些細でありながら私の人生を変えるマントラとなったのですが、私がこの記事を書いたのはそれによるものです。「同じタスクを3回以上繰り返す必要があるなら、スクリプトを書いて自動化せよ」 そろそろ、このブログはなんだろうと思い始めているのではないでしょうか。半年振りに記事を書いたのですから。ツイッターで書いた Musings on social network platforms(ソーシャル・ネットワークプラットフォームについてじっくり考える) はさておき、この半年の間書き物をしていないというのはうそです。正確には、400ページの を書きました。

    Pythonや機械学習、そして言語の競争について – 極めて主観的な見地から | POSTD
  • 「Rプログラミング入門」をPythonで書き直す - めもめも

    何の話かというと RStudioではじめるRプログラミング入門 作者: Garrett Grolemund,大橋真也,長尾高弘出版社/メーカー: オライリージャパン発売日: 2015/03/25メディア: 大型この商品を含むブログを見る 某編集長から上記の書籍が送られてきて、「これは、次はRのを書けという指示か????」と勘ぐってみたものの、筆者はPython派なので、「これと同じことは全部Pythonでもできるんだよー」と言いたくなって、このエントリーを書き始めた次第です。ちなみに、この、Rの入門書としてはよくできているので、これのPython版ができたら、それはそれで役に立つ気もします。 なお、このエントリーでは、あくまでコードの部分だけを書き直して、RとPythonの差異についての説明だけを行ないます。コードそのものの説明については、上記の書籍をご購入ください。 環境準備 IP

    「Rプログラミング入門」をPythonで書き直す - めもめも
  • 統計を始めたい人に僕がPythonよりRを勧める理由 - 蛍光ペンの交差点

    今回は「ほぼRしか使ったことがない」人間*1が、できる限り二者の優劣をくっきり述べる。 僕はほとんどRしか使ったことがない。Pythonはtfidfやクイックソートをライブラリ無しで実装した程度。 前半の主張は以下である。 「過去のRでの10回程度の解析において、Rで不十分さを感じてPythonを使った経験は1度だけ、しかも部分的にしかなかった。Rの使いにくさを感じることも最近はだいぶ無くなった。だから初学者には「事足りる」Rを勧める。」 前半の主張 今までにRでやった解析の内容は大体以下である。 (未発表)は途中で頓挫した、もしくは現在進行中/契約により詳細&解析結果の公開不可能のプロジェクトである。 [ビジネス・製造業] 米国新車価格の線形重回帰分析(授業の期末課題) [ビジネス・不動産不動産賃貸価格の線形重回帰分析(発表スライド) [ビジネス・IT] EコマースサイトのARIMA

    統計を始めたい人に僕がPythonよりRを勧める理由 - 蛍光ペンの交差点
  • 1