Hakkyでは「データでプロダクトを価値あるものにする」というミッションの元、大規模言語モデルを積極的に活用して記事執筆しております。ビジネスにおけるAI活用のため、Handbookをお役立ていただきましたら幸いです。 はじめに ユーザーがメンション付きメッセージを送信 Slack Event APIがメッセージをサーバーに送信 OpenAI APIにメッセージを送信 chat.postMessageでBotがメンション付きメッセージのスレッドに返信 といった流れでユーザーのメッセージに対して、ChatGPTが返信を行うBotの作成を行います。 アーキテクチャは以下の通りです。 import os from fastapi import FastAPI, Request, Response from openai import OpenAI, OpenAIError, RateLimit
こんにちは、メルカリの生成AIチームで ML Engineer をしている ML_Bear です。 以前の記事[1]では商品レコメンド改善のお話をさせていただきましたが、今回は、大規模言語モデル (LLM) やその周辺技術を活用して30億を超える商品のカテゴリ分類を行なった事例を紹介します。 ChatGPTの登場によりLLMブームに火がついたということもあり、LLMは会話を通じて利用するものだと認識されている方が多いと思いますが、LLMが有する高い思考能力はさまざまなタスクを解決するためのツールとしても非常に有用です。他方、その処理速度の遅さや費用は大規模なプロジェクトでの活用にあたっての障壁となり得ます。 本記事では、こうしたLLMの課題を克服するためにさまざまな工夫を施し、LLM及びその周辺技術のポテンシャルを最大限に引き出して大規模商品データのカテゴリ分類問題を解決した取り組みについ
最近、ローカルLLMがアツくなっているという話をtwitterでチラホラ見かける。 ローカルLLMって何じゃ?というと、オープンに公開されているモデルのウエイトをDLしてきて手元のPC上で推論させる事である。 オープンなAIモデルとは逆の存在として、モデルがDLできないクローズなAIモデルもある。 OpenAIやAnthropicのような最先端AI企業のクローズなAIモデルに比べて、オープンに公開されているオープンなAIモデルの性能は今でもかなり後れを取っている。 だから去年の間はあくまでAIの本命はChatGPTのようなクローズモデルであって、オープンなAIモデルなんて眼中にありませんみたいな風潮が無くはなかった。だが最近は風向きが少々変わってきている。 GPTのAPI高い問題 & OpenAIがAIベンチャー皆殺しにしてしまう問題 まず「結局GPTのAPIを叩いてサービス運営して成功し
【📩 仕事の相談はこちら 📩】 お仕事の相談のある方は、下記のフォームよりお気軽にご相談ください。 https://forms.gle/G5g1SJ7BBZw7oXYA7 もしもメールでの問い合わせの方がよろしければ、下記のメールアドレスへご連絡ください。 info*galirage.com(*を@に変えてご送付ください) 🎁 「生成AIの社内ガイドライン」PDFを『公式LINE』で配布中 🎁 「LINEで相談したい方」や「お問い合わせを検討中の方」は、公式LINEでご連絡いただけますと幸いです。 (期間限定で配信中なため、ご興味ある方は、今のうちに受け取りいただけたらと思います^^) https://lin.ee/3zRuqKe おまけ①:生成AIアカデミー より専門的な「生成AIエンジニア人材」を目指しませんか? そんな方々に向けて、「生成AIアカデミー(旧:生成AIエンジニア
米OpneAIは現地時間4月24日、ChatGPTなどOpenAIブランドを利用する際のガイドラインを公開した。ロゴマークやその利用方法、また「ChatGPT」などの文言を利用する際の注意点が記されている。 例えば、OpenAIのAPIを利用した製品について「◯◯GPT」「GPT-4搭載の◯◯」「ChatGPT搭載の◯◯」といった表現は使わず、「Powered by GPT-4」や「Built with GPT-4」などの表現を使うよう求めている。また、OpenAIのモデルを指すときはGPT-3、GPT-4、ChatGPT、DALL・Eを使い、Ada、Babbage、Curie、Davinci、GPT-3.5-turboなどのエンジン名を避けるようにとしている。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く