新たにリリースされた Recraft V3 は、Hugging Face ベンチマーク・リーダーボードの txt2imge 分野で FLUX1.1[pro] よりも上位になり話題を呼んでいます。 Recraft V3 :…
新たにリリースされた Recraft V3 は、Hugging Face ベンチマーク・リーダーボードの txt2imge 分野で FLUX1.1[pro] よりも上位になり話題を呼んでいます。 Recraft V3 :…
19日に行われた Kyoto.なんか #3 で発表・デモをさせていただいた内容まとめです。 はじめに: 検出器の重要性 アイドル顔識別 をずっとやっている中で、顔の識別・分類(Classification)はCNNを使って出来ているけれど まだ上手く出来ていない別のタスクがあって。 それが画像内からの顔領域の検出 (Detection, Localization)。 「画像内に写っている人物が誰であるか」を識別するためには、まずはその画像に写っている「顔」を検出する必要がある。 その検出された顔それぞれについて分類器にかけて「この顔は○○さん」「この顔は××さん」と分類していくことになるわけで。 分類器に与える入力画像を切り抜いて抽出するのにもまず顔領域を検出する必要があるし、その分類器を学習させるためのデータセットも、様々な画像から顔領域を検出して切り抜いてそれぞれに対してラベル付けする
以前から書いているDeep Learningによるアイドル顔識別の話の続き。 コツコツと顔画像収集とラベル付けを続けて、そこそこにデータが集まってきたので ここらでちゃんと性能評価をしてみよう、と。 データセットの作成 今回は、現時点で重複なく180件以上の顔画像が集まっている40人のアイドルを分類対象とした。 対象アイドル一覧 これらのアイドルに分類のラベルindexを振り(推してる順とかじゃなくてランダムにね)、それぞれから無作為に抽出した180件の顔画像をそれぞれラベルとセットでレコードを作り、シャッフルして30件ずつ6つのデータセットに分けて保存。 data-00.tfrecords data-01.tfrecords data-02.tfrecords data-03.tfrecords data-04.tfrecords data-05.tfrecords レコードは、以前の記
TensorFlowとは2015/11/9にオープンソース化されたGoogleの機械学習ライブラリです。この記事ではディープラーニングと言われる多層構造のニューラルネットワークをTensorFlowを利用して構築しています。 TensorFlowはPythonから操作できますがバックエンドではC++で高速に計算しています。macのPython2.7系環境でTensorFlowの上級者用チュートリアルを行い、手書き認識率99.2%の多層構造の畳み込みニューラルネットワークモデルの分類器を構築したときの作業メモです。特別な設定なしにCPU使用率270%メモリ600MByteとちゃんと並列計算してくれました。MNISTランキングを見ると認識率99.2%は上位のモデルとなるようです。 TensorFlowチュートリアル TensorFlowの初心者用と上級者用チュートリアル2つに取り組んでみました
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く