タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとdeeplearningとAIに関するkyo_agoのブックマーク (2)

  • Self-Attentionを全面的に使った新時代の画像認識モデルを解説! - Qiita

    08/31 (2020): 投稿 08/31 (2020): 「畳み込みを一切使わない」という記述に関して、ご指摘を受けましたので追記いたしました。線形変換においては「チャネル間の加重和である1x1畳み込み」を実装では用いています。 08/31 (2020): 論文で提案されているモデルの呼称に関して認識が誤っていたためタイトルおよび文章を一部修正しました。 言葉足らずの部分や勘違いをしている部分があるかと思いますが、ご指摘等をいただけますと大変ありがたいです。よろしくお願いします!(ツイッター:@omiita_atiimo) Self-Attentionを全面的に使った新時代の画像認識モデルを解説! 近年の自然言語処理のブレイクスルーに大きく貢献したものといえば、やはりTransformerだと思います。そこからさらにBERTが生まれ、自然言語の認識能力などを測るGLUE Benchm

    Self-Attentionを全面的に使った新時代の画像認識モデルを解説! - Qiita
  • ディープラーニング(TensorFlow)を使用した株価予想 ~その2~ - Qiita

    前回の続き。 ディープラーニングのフレームワークであるTensorFlowを使用して株価を予想するぞ~、というお話です。ちなみに前回は完全に失敗でした。 前回のコメントで、tawagoさんから「Googleが同じようなことしている」という情報をいただいたので、そちらをコピ・・・インスパイアしてみました。 ##前回との相違点 前回は、「数日分の日経平均を使用して、次の日の日経平均が上がるか、下がるか、変わらないか(3択)を予想する」ものでした。 Googleのデモでは、「数日分の世界中の株価指数(ダウ、日経平均、FTSE100、DAXなど)を使用して、次の日のS&Pが上がるか下がるか(2択)を予想する」という内容でした。 ということで、下記が前回からの主な変更点となります。 「上がるか」「下がるか」の2択 日経平均だけでなく、他国の株価指数も使用 隠れ層x2、ユニット数は50,25 予想する

    ディープラーニング(TensorFlow)を使用した株価予想 ~その2~ - Qiita
  • 1