Vertex AI プラットフォームの概要を説明し、このプラットフォームを使用してコードを 1 行も記述せずに AutoML 機械学習モデルを迅速に構築、トレーニング、デプロイする方法を説明する
Google AI、画像内の全ての物体に効率的にラベリングする手動と機械学習をコラボしたツールを発表。既存の3倍速。試せるデモあり 2018-10-23 Google AIの研究者らは、画像内の全ての物体に効率的にアノテーションする手動と機械学習を組み合わせたツール「Fluid Annotation」を発表しました。 論文:Fluid Annotation: A Human-Machine Collaboration Interface for Full Image Annotation 著者:Mykhaylo Andriluka, Jasper R. R. Uijlings, Vittorio Ferrari 従来の手動ラベリングツールでは、画像内の各オブジェクトの輪郭を慎重にクリックして注釈を付ける必要があり、膨大な時間を要します。そこで、本論文は、画像内のすべてのオブジェクトと背景領
少し前にGoogleが社内教育用のコンテンツとして使用しているというMachine Learning Crash Courseが公開されていました。PredictionIOのコミッタをやっていながら機械学習はほぼ素人というのもどうかと思っていたこともあり、社内で毎日1時間ずつこの講座を進めてみることにしました。 developers.google.com 15時間で終わるということになっていますが、英語の動画やテキストの理解に時間がかかってしまい、最終的には40時間くらいかかってしまったものの、なんとか完走することができました。機械学習やディープラーニングの基礎について25のレッスンがあり、それぞれのレッスンは以下のコンテンツから構成されています。 動画による概要の解説 より詳細な内容を説明したテキスト ブラウザ上でビジュアルな実験が可能なプレイグラウンド ノートブックを使用したプログラミ
[速報]Google、クラウドで高速にディープラーニングを行う「Cloud Machine Learning」発表、TensorFlowベース。GCP Next 2016 Googleは同社のクラウドに関するイベント「GCP Next 2016」を3月23日、24日の2日間にわたり米サンフランシスコで開催しています。 初日の基調講演で、最後の話題は機械学習(Machine Learning)でした。Googleはクラウドサービスの1つとして機械学習機能にも注力することを表明しています。Google Senior FellowのJeff Dean氏は、機械学習はコンピュータの歴史のなかで最も重要な出来事の1つだと説明。 Googleは2012年以来機械学習をさまざまなサービスに利用し、いま社内ではより使いやすくなった第二世代を機械学習を利用しているとのこと。 トレーニング済みの機械学習サービ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く