タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとmachinelearningとprogrammingに関するlepton9のブックマーク (2)

  • Netflixを支える推薦システムの裏側|masa_kazama

    イントロNetflixは、スマホやPCがあれば、どこでもいつでも、映画やドラマを見放題で楽しむことができます。今年はお家時間が増えたことで、Netflixをより満喫している方も多いのではないでしょうか。実際に、2020年1月〜3月に会員が全世界で1600万人ほど増え、合計1億8000万人を超えています。 Netflixをいくつかの数字で見てみると、さらにその凄さに驚かされます。 ・全世界のインターネット通信量(下り)の15%をNetflixが占めており、YouTubeを超える世界一の動画サービス ・時価総額が20兆円超え ・サブスクリプション収入が月々約1500億円 そんな多くのユーザーを有するNetflixの魅力の1つに、推薦システムがあります。Netflixのホーム画面には、今話題の作品やユーザーにパーソナライズ化されたおすすめの作品が並びます。 Googleの検索と違って、Netfl

    Netflixを支える推薦システムの裏側|masa_kazama
  • 電王・Ponanza開発者が語る、理由がわからないけどスゴイ“怠惰な並列化”

    皆さんこんにちは。 私は将棋プログラム「Ponanza」の作者、山一成と申します。Ponanzaは初めてプロ棋士を破った将棋プログラムで、近年最も強い将棋プログラムと言えると思われます。また、2017年もトッププロ棋士の方と対局することが予定されています。Ponazaの改良のための機械学習に現在ジサトライッペイさんのPC「大紅蓮丸」の計算リソースを借りているのですが、その関係で原稿を書いてとお願いされたので、3回に渡って将棋プログラムの今について、書いていきたいと思います。 フリーランチの終焉、並列化の効率問題 アスキー読者の方々には言うまでもないのですが、まずは近年のCPU事情について解説していきたいと思います。ちょっと昔まではCPUはシングルコアが当たり前で18ヶ月経過すればCPUのトランジスター数は倍になり、性能が向上するという流れが続いていました。ソフトウェアはその性能向上に伴い

    電王・Ponanza開発者が語る、理由がわからないけどスゴイ“怠惰な並列化”
  • 1