タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとnetaとmathematicsに関するlepton9のブックマーク (2)

  • 「解けない方程式」

    よくアニソンとかの歌詞で「解けない方程式」みたいなフレーズが出てくるが、代数方程式だって5次方程式(たった5次!)以上になったら一般には解けないし、微分方程式に至っては「ミレニアム懸賞問題」として100万ドルの懸賞金が懸かってたりする難しさなわけで、たいていの方程式は解けなくて当たり前なんだよ!って、聞くたびにツッコミたくなる。 つまり、「解ける方程式」なんてほとんど無いのだから、「解けない方程式」に悩むなんて、空が飛べる翼がないことに悩むくらい実現不可能な空想であり、そもそも悩み方として間違っている。 というかまずは、お前の歌詞で求める「解」は近似解ではダメなのか、どうしてダメなのか、歌詞はせいぜい10分も無いけど、小一時間膝を付き合わせて問い詰めたい。ゼミを開いてお前の意図を詳らかにしたい。 ガロア群が可解にならないからって諦める前に、最適化のための近似アルゴリズムを試せよ。ニュートン

    「解けない方程式」
  • PHPで素数を数えて落ち着いてみた - hnwの日記

    2,3,5,7,11,13,...と素数を順に列挙することで落ち着く人が世の中にはいるようです(参考:「素数を数えて落ち着くんだ…」)。とはいえ人力では素数を100個列挙するのさえつらいので、プログラミング言語に頼った方が落ち着けるはずです。PHPには、そんな状況で使えそうな関数が存在します。 gmp_nextprime ― 次の素数を見つける PHP: gmp_nextprime - Manual よし、この関数さえあれば落ち着けるぞ、と思いきや、マニュアルにはこんな記述もあります。 注意: この関数は素数を識別するのに確率的アルゴリズムを使用します。 誤って合成数を取得してしまうことは、まずありません。 PHP: gmp_nextprime - Manual えっ?「まずありません」ってことは少しくらいはあるんでしょうか。逆に不安で落ち着かなくなってしまいそうです。 稿ではこの関数に

    PHPで素数を数えて落ち着いてみた - hnwの日記
  • 1