はじめに 本記事では2020年3月~6月にかけて開催され、約2200チームが参加したKaggleのコンペ Tweet Sentiment Extraction(通称Tweetコンペ)について、振り返りを兼ねてまとめたいと思います。 はじめに コンペ概要 データ データ数について Sentimentについて 元データについて 評価指標 BERTによるQ&Aアプローチ Question Answeringについて 本コンペにおけるアプローチ QAアプローチの課題 最後に コンペ概要 Tweetと正解ラベルの例 まず初めに本コンペのポイントをいくつか挙げます Sentimentラベルの与えられたTweetから、そのSentimentに該当する箇所を抜き出す課題。 アノテーションの問題で正解ラベルにノイズが多く含まれており、noisy labelへの対処もポイントとなった。 BERTやRoBERT