ブックマーク / data.gunosy.io (8)

  • 【Slack×Re:dash×SpreadSheet】らくらくリアルタイムKPI通知 - Gunosyデータ分析ブログ

    こんにちは、データ分析部のクボタです。最近はアイドルではsora tob sakanaの『ribbon』とアイドルネッサンスの『前髪』と東京女子流の『鼓動の秘密』を良く聴いています。来年のTIFと@jamが楽しみですね。 www.youtube.com www.youtube.com www.youtube.com 現在Gunosyでは様々なプロダクトを運営・開発していますが、施策等における意思決定においてデータを非常に重要な指標として扱っています。そのため、日常より分析部以外のメンバーも含めたダッシュボードやSlackのリアルタイム通知によるプロダクトの現状把握の場を大事にしています。 GunosyがKDDI株式会社と共同で提供しているアプリのニュースパスでは現在ダッシュボードはRe:dashを用いて作成しています。Re:dashは細かいSQLクエリの更新スケジュール設定や、Slack

    【Slack×Re:dash×SpreadSheet】らくらくリアルタイムKPI通知 - Gunosyデータ分析ブログ
    masa-wo
    masa-wo 2017/09/02
  • 世界を代表する8人の旬なトップ機械学習研究者たち (2017年上半期版) - Gunosyデータ分析ブログ

    データ分析部の久保です。 最近行ったライブはAimerのAcoustic Live Tour 2017です。 早いもので2017年も3月になりましたが、機械学習分野は相変わらずとてもホットな分野です。 去年はAI人工知能という言葉がディープラーニングとともにバズワードになり、その傾向は尚も続いています。 その流行の元となったのが機械学習なわけですが、今その最先端ではどういう人がどのような研究をしているのかをかなりざっくりと見ていきたいと思います。 調査方法は2013年に同様のことを行ったとき qiita.com と同じく、NIPSとICMLという機械学習の代表的国際会議の過去3年分を対象とし、1st authorの重要度をそれ以外の著者よりも重くしてスコアづけしました。具体的には複数人の著者がいる場合は1st authorを0.8として、残りの0.2を他の著者に分配、1人の場合は1として

    世界を代表する8人の旬なトップ機械学習研究者たち (2017年上半期版) - Gunosyデータ分析ブログ
    masa-wo
    masa-wo 2017/03/04
  • さくっとトレンド抽出: Pythonのstatsmodelsで時系列分析入門 - Gunosyデータ分析ブログ

    久しぶりの投稿になってしまいましたが、ニュースパス(現在CM放映中!!)開発部の大曽根です。 作業中はGrover Washington Jr のWinelightを聴くと元気が出ます。参加ミュージシャンが素晴らしいですね。 なぜ時系列分析をするのか 季節調整 実演 おまけ: 時間別に見てみる まとめ 今後 なぜ時系列分析をするのか 数値を非常に重視している弊社では、数値を知るためのツールとしてRedashやChartioおよびSlackへの通知を活用しています。現在の数値を理解する上では、長期のトレンド(指標が下がっているのか、上がっているのか)を知ることが重要です。しかし、日々変化するデータ(特に売上やKPIと言われる指標)は、ばらつきも大きく、変化を適切に捉えることが難しいこともあります。 特にSlackなどへの通知を行っていると、日々の変化に囚われがちです。例えば、弊社ではニュース

    さくっとトレンド抽出: Pythonのstatsmodelsで時系列分析入門 - Gunosyデータ分析ブログ
    masa-wo
    masa-wo 2017/02/03
  • Amazon AthenaをBigQueryと比較してみた

    こんにちは、データ分析部の阿部です。 作業中音楽は聞かない派ですが、ホワイトノイズを聞いていると集中できるという噂を聞いたことがあるので少し気になっています。 今回は、re:Invent2016で発表されたばかりのAthenaを紹介します。 Athenaとは データの準備 テーブル作成 速度測定 まとめ Athenaとは 日、AWSのre:Invent中で、RedshiftやEMRに続くビッグデータサービスとして、Athenaというサービスがリリースされました。 Athenaは、S3上のデータ(CSV, JSON, その他フラットファイル)に対して、インタラクティブにSQLを実行することができます。 RedshiftやEMRに比べて、クラスタの構築や運用を必要とせず、シンプルにクエリを実行できるというメリットがあります。 課金形態も、クエリ&読み込んだデータ量に応じて課金という点で、Go

    Amazon AthenaをBigQueryと比較してみた
    masa-wo
    masa-wo 2016/12/15
  • Amazon Kinesis AnalyticsとES/Kibana4でリアルタイムダッシュボード構築 - Gunosyデータ分析ブログ

    こんにちは。開発・運用推進部の小出です。 イヤホンを噛み切られること数回、最近のBGMはもっぱら環境音です。 「耳からうどんが出ているようにしか見えない」という噂のBluetoothイヤホンが気になっています。 今回は、Amazon Kinesis AnalyticsとElasticsearch/Kibana4を利用したリアルタイムダッシュボード構築についてです。 Amazon Kinesis Analytics とは ダッシュボードを構築してみる Source StreamとMapping Query Destination ログデータを拡充する Reference DataとMapping Query Destination まとめ おまけ:AmazonES&Kibana4のダッシュボード共有 Amazon Kinesis Analytics とは Amazon Kinesis A

    Amazon Kinesis AnalyticsとES/Kibana4でリアルタイムダッシュボード構築 - Gunosyデータ分析ブログ
    masa-wo
    masa-wo 2016/11/11
  • Re:dashで異なるData Sourceのクエリ結果をJOINできるようになったので試してみた - Query Results (Alpha) - Gunosyデータ分析ブログ

    こんにちは。グノシー開発部で部長をしている@cou_zです。最近はDJ RYOWのビートモクソモネェカラキキナ 2016 REMIXをよく聴いています。11/23のライブが楽しみですね。 Gunosyにおけるプロダクト改善は、データ可視化による現状把握から始まると考えています。Gunosyではデータ可視化にいくつかのツールを利用していますが、その中でも最近はRe:dashを用いることが多くなってきました。 先日、Re:dashを用いたリアルタイムKPI通知について紹介しました。 data.gunosy.io 今回は、Re:dashの新しい機能である Query Results (Alpha) Data Source を紹介します。 この機能により、複数Data Sourceのクエリ結果のJOINが可能になりました。アルバイトで分析を担当している松嶋も「ついに使えるようになったんですね!!r

    Re:dashで異なるData Sourceのクエリ結果をJOINできるようになったので試してみた - Query Results (Alpha) - Gunosyデータ分析ブログ
    masa-wo
    masa-wo 2016/11/06
  • 【Slack×Re:dash】リアルタイムKPI通知をコード0行で実現する - Gunosyデータ分析ブログ

    データ分析部で部長をしている@cou_zです。最近はLIBROのマイクロフォンコントローラーをよく聴いています。 Gunosyにおけるプロダクト改善は、データ可視化による現状把握から始まると考えています。 ログを収集して、ダッシュボードでKPI(重要業績指標)を可視化することは、今では当たり前のことになっていると思います。深夜バッチでKPIを集計して、翌朝に確認することは重要ですが、KPIをリアルタイムに知ることによって、現状把握がさらに進むことがあります。 しかし、リアルタイムにKPIを集計できたとしても、実際にそれらを確認するとは限りません。頻繁にダッシュボードを見るのはとても億劫で、次第に見なくなってしまいがちです。そこで、日常的に開いているチャットにKPIがリアルタイムに通知されると、確認の際の負担を軽減することができます。 Gunosyでは、チャットツールにSlackをダッシュボ

    【Slack×Re:dash】リアルタイムKPI通知をコード0行で実現する - Gunosyデータ分析ブログ
    masa-wo
    masa-wo 2016/10/01
  • Scrapy + Scrapy Cloudで快適Pythonクロール+スクレイピングライフを送る - Gunosyデータ分析ブログ

    はじめに こんにちは、データ分析部の久保 (@beatinaniwa) です。 今日は義務教育で教えても良いんじゃないかとよく思うWebクロールとスクレイピングの話です。 私自身、日頃は社内に蓄積されるニュース記事データや行動ログをSQLPythonを使って取得・分析することが多いですが、Web上にある外部データを使って分析に役立てたいというシーンはままあります。 単独のページをガリガリスクレイピングしたいときなどは、下の1年半ぐらい前の会社アドベントカレンダーに書いたような方法でやっていけば良いんですが、いくつもの階層にわかれたニュースポータルサイトやグルメポータルサイトを効率よくクロール+スクレイピングするためには、それに適したツールを使うのがすごく便利です。 qiita.com そこでPythonスクレイピングフレームワークScrapyの登場です。 Scrapy | A Fast

    Scrapy + Scrapy Cloudで快適Pythonクロール+スクレイピングライフを送る - Gunosyデータ分析ブログ
    masa-wo
    masa-wo 2016/08/18
  • 1