ブックマーク / note.com/npaka (13)

  • GPT-4o の概要|npaka

    以下の記事が面白かったので、簡単にまとめました。 ・Hello GPT-4o 1. GPT-4o「GPT-4o」 (「omni」の「o」) は、人間とコンピュータのより自然な対話に向けた一歩です。テキスト、音声、画像のあらゆる組み合わせを入力として受け入れ、テキスト、音声、画像の出力のあらゆる組み合わせを生成します。 音声入力にはわずか232ミリ秒 (平均320ミリ秒) で応答できます。これは、人間の会話における応答時間とほぼ同じです。英語のテキストおよびコードでは「GPT-4 Turbo」のパフォーマンスに匹敵し、英語以外の言語のテキストでは大幅に改善されており、APIでははるかに高速で50%安価です。「GPT-4o」は、既存のモデルと比較して、特に視覚と音声の理解に優れています。 2. モデルの機能「GPT-4o」以前は、音声モードを使用して、平均2.8秒 (GPT-3.5) および5

    GPT-4o の概要|npaka
  • OpenAI の Assistant Playground の Code Interpreter を試す|npaka

    OpenAI」の 「Assistant Playground」の「Code Interpreter」を試したので、まとめました。 前回 1. Code Interpreter「Code Interpreter」は、アシスタントがサンドボックス実行環境でPythonコードを作成および実行できるツールです。さまざまなデータと形式を含むファイルを処理し、データとグラフの画像を含むファイルを生成できます。 2. アシスタントの作成アシスタントの作成手順は、次のとおりです。 (1)  「Playground」を開き、左端の「Playgroundアイコン」とタイトル横の「Assistants」を選択し、「+Create」を押す。 (2) WebUIで以下のように設定して、SAVEボタンを押す。 ・Name : 数学の家庭教師ボット ・Instructions : あなたは数学の個人家庭教師です。数学

    OpenAI の Assistant Playground の Code Interpreter を試す|npaka
  • OpenAI DevDay で発表された新モデルと新開発ツール まとめ|npaka

    以下の記事が面白かったので、かるくまとめました。 ・New models and developer products announced at DevDay 1. GPT-4 Turbo「GPT-4 Turbo」は、「GPT-4」より高性能です。2023年4月までの知識と128kのコンテキストウィンドウを持ちます。さらに、「GPT-4」と比較して入力は1/3、出力は1/2の安い価格で提供します。 開発者はモデルID「gpt-4-1106-preview」で試すことができます。今後数週間以内に、安定した実稼働モデルをリリースする予定です。 1-1. Function Calling の更新「Function Calling」に、単一メッセージから複数のFunction (「車の窓を開けてエアコンをオフにする」など) を呼び出す機能などが追加されました。精度も向上しています。 1-2. 構造

    OpenAI DevDay で発表された新モデルと新開発ツール まとめ|npaka
  • LangChain クイックスタートガイド - Python版|npaka

    Python版の「LangChain」のクイックスタートガイドをまとめました。 ・LangChain v0.0.329 (2023/11/3) 1. LangChain「LangChain」は、「大規模言語モデル」 (LLM : Large language models) と連携するアプリの開発を支援するライブラリです。 「LLM」という革新的テクノロジーによって、開発者は今まで不可能だったことが可能になりました。しかし、「LLM」を単独で使用するだけでは、真に強力なアプリケーションを作成するのに不十分です。真の力は、それを他の 計算 や 知識 と組み合わせた時にもたらされます。「LangChain」は、そのようなアプリケーションの開発をサポートします。 主な用途は、次の3つになります。 ・文書に関する質問応答 ・チャットボット ・エージェント 2. LangChain のモジュール「L

    LangChain クイックスタートガイド - Python版|npaka
  • OpenAI API の ファインチューニングガイド|npaka

    1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

    OpenAI API の ファインチューニングガイド|npaka
  • 『OpenAI GPT-4/ChatGPT/LangChain 人工知能プログラミング実践入門』 が発売になります。|npaka

    このは、「GPT-4」「ChatGPT」「LangChain」を活用して「チャットAI」を開発するための入門書です。 対象読者は、 ・チャットAIのしくみを知りたい人 ・チャットAIに知識や計算の能力を与えて仕事を自動化したい人 ・会話ロボットやAITuberなどの会話エンジンとして使いたい人 ・自分のアプリケーションにチャットUIを組み込みたい人 になります。 「ChatGPT」は、OpenAIが開発した最新のチャットAIです。ログインして会話を入力するだけで使える手軽さはもちろん、人間のような自然な会話ができることから世界中で人気となり、2022年11月にリリースされてからわずか2ヶ月で1億人のアクティブユーザー数を達成しました。同年にリリースされた画像生成AI「Stable Diffusion」とともに、研究者や専門家ではない一般の人が人工知能を活用しはじめる、ターニングポイントと

    『OpenAI GPT-4/ChatGPT/LangChain 人工知能プログラミング実践入門』 が発売になります。|npaka
  • StackLLaMA : RLHFでLLaMAを学習するための実践ガイド|npaka

    以下の記事が面白かったので、簡単にまとめました。 ・StackLLaMA: A hands-on guide to train LLaMA with RLHF 1. はじめにこの記事では、「SFT」「RM」「RLHF」の組み合わせで、「Stack Exchange」の質問に答える「StackLLaMA」の学習の全ステップを紹介します。 ・SFT (Supervised Fine-tuning) : 教師ありファインチューニング ・RM (Reward / preference modeling) : 報酬 / 嗜好モデリング ・RLHF (Reinforcement Learning from Human Feedback) : ヒューマンフィードバックからの強化学習 「StackLLaMA」は、以下でデモを試すことができます。 ベースモデルとして「LLaMA 7B」、データセットとして「

    StackLLaMA : RLHFでLLaMAを学習するための実践ガイド|npaka
  • ChatGPTプラグイン の作成方法|npaka

    1. ChatGPTプラグインの作成手順「ChatGPTプラグイン」の作成手順は、次のとおりです。 (1) APIの実装 (2) マニフェストファイルの作成 (3) OpenAPIドキュメントの作成 2. マニフェストファイルの作成2-1. マニフェストファイルの基構成「マニフェストファイル」は、「ChatGPTプラグイン」のメタデータを記述するファイルです。APIのドメインの「/.well-known/ai-plugin.json」でホストします。 「マニフェストファイル」の基構成は、次のとおりです。 { "schema_version": "v1", "name_for_human": "TODO Plugin", "name_for_model": "todo", "description_for_human": "Plugin for managing a TODO list.

    ChatGPTプラグイン の作成方法|npaka
  • ChatGPTプラグイン の概要|npaka

    OpenAI」の「ChatGPTプラグイン」の記事が面白かったので、かるくまとめました。 ・Chat Plugins - OpenAI API ・ウェイトリスト 1. ChatGPTプラグイン「ChatGPTプラグイン」は、「ChatGPT」をサードパーティのアプリケーションに接続するためのプラグインです。「ChatGPT」は、開発者によって定義されたAPIと対話し、機能を強化し、幅広いアクションを実行できるようになります。 次のような機能を追加できます。 ・リアルタイム情報の取得 (スポーツスコア、株価、最新ニュースなど) ・知識ベース情報の取得 (会社のドキュメント、個人的なメモなど) ・ユーザーに代わってアクションを実行 (フライトの予約、べ物の注文など) プラグイン開発者は、マニフェストファイルとAPIエンドポイントを公開します。これらはプラグインの機能を定義し、「ChatGP

    ChatGPTプラグイン の概要|npaka
  • OpenAI API で提供されている モデル まとめ|npaka

    1. OpenAI APIのモデル「OpenAI API」は、用途に応じて「GPT-3.5」をはじめとする様々なモデル を提供しています。 ・GPT-3.5 : 自然言語とコードを理解および生成する最新モデル。 ・DALL-E : 自然言語から画像を生成・編集するモデル ・Whisper : 音声をテキストに変換するモデル ・Embeddings : 埋め込み (ベクトル表現) を生成するモデル ・Codex : コードを理解および生成するモデル ・Moderation : センシティブおよび 安全でない文章を検出するモデル ・GPT-3 : 自然言語を理解および生成する旧モデル 2. GPT-3.5「GPT-3.5」は、自然言語とコードを理解および生成する最新モデルです。最も高性能で費用対効果の高いモデルは、チャット用に最適化されていますが、既存タスクにも適している「gpt-3.5-tu

    OpenAI API で提供されている モデル まとめ|npaka
  • ChatGPT API の使い方|npaka

    OpenAI」の 記事「Chat completions」が面白かったので、軽くまとめました。 1. ChatGPT APIChatGPT」は、OpenAIの最も先進的な言語モデルである「gpt-3.5-turbo」を搭載しています。「OpenAI API」から「gpt-3.5-turbo」を使用して独自アプリケーションを作成できます。 ・メールや文章のドラフト ・Pythonコードの生成 ・一連の文書に関する質問応答 ・会話型エージェントの作成 ・ソフトウェアへの自然言語インターフェースの追加 ・さまざまな科目の家庭教師 ・言語の翻訳 ・ビデオゲームのキャラクターのシミュレート 2. 使用料金使用料金は、以下で確認できます。 3. Colab での実行「gpt-3.5-turbo」は、マルチターンの会話を簡単にするように設計されていますが、会話のないシングルターンタスクでも役立ちます

    ChatGPT API の使い方|npaka
  • 最近話題になった 音楽生成AI まとめ|npaka

    最近話題になった「音楽生成AI」をまとめました。 1. AudioGenテキストからオーディオを生成するAIモデルです。「風が吹く中で口笛をする音」や 「大勢の歓声の中で話す男性の声」といったテキストから、それらしい音を生成してくれます。 現在のところ、モデルやAPIは提供されていません。 We present “AudioGen: Textually Guided Audio Generation”! AudioGen is an autoregressive transformer LM that synthesizes general audio conditioned on text (Text-to-Audio). 📖 Paper: https://t.co/XKctRaShN1 🎵 Samples: https://t.co/e7vWmOUfva 💻 Code & mod

    最近話題になった 音楽生成AI まとめ|npaka
  • Google Colab で はじめる Stable Diffusion v1.4|npaka

    2. ライセンスの確認以下のモデルカードにアクセスして、ライセンスを確認し、「Access Repository」を押し、「Hugging Face」にログインして(アカウントがない場合は作成)、同意します。 4. Colabでの実行Colabでの実行手順は、次のとおりです。 (1) メニュー「編集→ノートブックの設定」で、「ハードウェアアクセラレータ」に「GPU」を選択。 (2) 「Stable Diffusion」のインストール。 # パッケージのインストール !pip install diffusers==0.3.0 transformers scipy ftfy(3) トークン変数の準備。 以下の「<HugginFace Hubのトークン>」の部分に、先程取得したHuggingFace Hubのトークンをコピー&ペーストします。 # トークン変数の準備 YOUR_TOKEN="<H

    Google Colab で はじめる Stable Diffusion v1.4|npaka
  • 1