タグ

2009年2月24日のブックマーク (4件)

  • 確率論、統計学関連のWeb上の資料 - yasuhisa's blog

    確率論と統計学は俺がまとめるから、他の分野はお前らの仕事な。 確率論 Index of /HOME/higuchi/h18kogi 確率空間 生成されたσ-加法族 確率の基的性質 確率変数とその分布 分布の例 分布関数 期待値、分散、モーメント 期待値の性質 独立確率変数列の極限定理 大数の弱法則(Weak Law of Large Numbers) 確率1でおこること 大数の強法則 中心極限定理 特性関数 Higuchi's Page Brown運動 Brown運動のモーメントの計算 連続性 Brown運動の構成:Gauss系として Brown運動に関する確率積分 空間L^2の元の確率積分 伊藤の公式(Ito formula) 日女子大学理学部数物科学科の今野良彦先生のところにあった資料 最尤法とその計算アルゴリズム 収束のモード 大数の法則と中心極限定理 指数分布族モデルにおける最

    確率論、統計学関連のWeb上の資料 - yasuhisa's blog
  • 無精で短気で傲慢なプログラマ 技術者・SE・プログラマ面接時の技術的な質問事項

    最近、技術者やプログラマの方と面接する機会が多いです。 毎回質問事項を考えるのにも飽きたので、再利用できるようにまとめておきます。 もしさわりの質問に対する反応が良かった場合は、さらに突っ込んだ質問 (インデントが深いもの) をします。経験がないようなら、さらっと流します。 当ページ管理人は、現在 EC サイト構築・運営を担当しているため、 そっち方面に偏っています。 最小限の質問でその人のスキルを見極めるのは難しいなぁ…。 ------- ●追記 ホッテントリに載ったようなので、このチャンスに 人材募集 を再アピールしておきます。 興味のある方はぜひ。 念のため言っておきますが、全部できないとダメというつもりは全くありません (当ページ管理人も、CSS・Eclipse・Struts・Spring・Hibernate・Ruby・アセンブラなど、 弱い部分が多々あります)。 「~はできますか

    mdoi
    mdoi 2009/02/24
    面接ネタ
  • 楽天版MapReduce・HadoopはRubyを活用 - @IT

    2008/12/01 楽天は11月29日、東京・品川の社で開催した技術系イベント「楽天テクノロジーカンファレンス2008」において、近い将来に同社のEコマースサービス「楽天市場」を支える計画があるRubyベースの大規模分散処理技術「ROMA」(ローマ)と「fairy」(フェアリー)について、その概要を明らかにした。 レコメンデーションの処理自体はシンプル 楽天市場では現在、2600万点の商品を取り扱い、4200万人の会員に対してサービスを提供している。この規模の会員数・商品点数でレコメンデーション(商品の推薦)を行うのは容易ではない。 ※記事初出時に楽天市場の会員数を4800万人としてありましたが、これは楽天グループのサービス利用者全体の数字でした。楽天市場の会員数は正しくは4200万人とのことです。お詫びして訂正いたします。 レコメンデーションの仕組みとして同社は、一般的でシンプルなア

  • MapReduce - naoyaのはてなダイアリー

    "MapReduce" は Google のバックエンドで利用されている並列計算システムです。検索エンジンのインデックス作成をはじめとする、大規模な入力データに対するバッチ処理を想定して作られたシステムです。 MapReduce の面白いところは、map() と reduce() という二つの関数の組み合わせを定義するだけで、大規模データに対する様々な計算問題を解決することができる点です。 MapReduce の計算モデル map() にはその計算問題のデータとしての key-value ペアが次々に渡ってきます。map() では key-value 値のペアを異なる複数の key-value ペアに変換します。reduce() には、map() で作った key-value ペアを同一の key で束ねたものが順番に渡ってきます。その key-values ペアを任意の形式に変換すること

    MapReduce - naoyaのはてなダイアリー