タグ

*tutorialとTensorFlowに関するmichael-unltdのブックマーク (2)

  • TensorFlow 2+Keras(tf.keras)入門

    機械学習の勉強はここから始めてみよう。ディープラーニングの基盤技術であるニューラルネットワーク(NN)を、知識ゼロの状態から概略を押さえつつ実装。さらにCNNやRNNも同様に学ぶ。これらの実装例を通して、TensorFlow 2とKerasにも習熟する連載。 第1回 初めてのニューラルネットワーク実装、まずは準備をしよう ― 仕組み理解×初実装(前編)(2019/09/19) ニューラルネットワークは難しくない ディープラーニングの大まかな流れ 1データ準備 ・Playgroundによる図解 ・Pythonコードでの実装例 2問題種別 ・Playgroundによる図解 ・Pythonコードでの実装例 3前処理 ・Playgroundによる図解 ・訓練用/精度検証用のデータ分割について ・ノイズについて ・Pythonコードでの実装例 第2回 ニューラルネットワーク最速入門 ― 仕組み理解×

    TensorFlow 2+Keras(tf.keras)入門
  • 初心者のための TensorFlow 2.0 入門  |  TensorFlow Core

    このガイドでは簡単な導入として、Keras を使って次のことを行います。 画像を分類するニューラルネットワークを構築する。 そのニューラルネットワークをトレーニングする。 最後に、モデルの精度を評価する。 モデルの精度を評価します。 このファイルは Google Colaboratory の notebook ファイルです。 Python プログラムはブラウザ上で直接実行されます。TensorFlow を学んだり使ったりするには最良の方法です。Google Colabnotebook の実行方法は以下のとおりです。 Pythonランタイムへの接続:メニューバーの右上で「接続」を選択します。 ノートブックのすべてのコードを実行するには、Runtime > Run all を選択します。コードセルを 1 つずつ実行するには、セルにマウスポインタ―を合わせて Run cell アイコンを選択

    初心者のための TensorFlow 2.0 入門  |  TensorFlow Core
  • 1