タグ

algorithmとMathematicsに関するmk16のブックマーク (3)

  • コルモゴロフ複雑性 - Wikipedia

    コルモゴロフ複雑性(コルモゴロフふくざつせい、英語: Kolmogorov complexity)とは、計算機科学において有限長のデータ列の複雑さを表す指標のひとつで、出力結果がそのデータに一致するプログラムの長さの最小値として定義される。コルモゴロフ複雑度、コルモゴロフ=チャイティン複雑性 (Kolmogorov-Chaitin complexity) とも呼ばれる。 この画像はフラクタル図形であるマンデルブロ集合の一部である。このJPEGファイルのサイズは17KB以上(約140,000ビット)ある。ところが、これと同じファイルは140,000ビットよりも遥かに小さいコンピュータ・プログラムによって作成することが出来る。従って、このJPEGファイルのコルモゴロフ複雑性は140,000よりも遥かに小さい。 コルモゴロフ複雑性の概念は一見すると単純なものであるが、チューリングの停止問題やゲー

    コルモゴロフ複雑性 - Wikipedia
  • P != NP(P≠NP)予想が証明されるかも:アルファルファモザイク

    ■編集元:ニュース速報板より「P != NP(P≠NP)予想が証明されるかも」 1 カウンセラー(東京都) :2010/08/09(月) 18:19:40.34 ID:ZpOSgVlx● ?PLT(12000) ポイント特典 ある Anonymous Coward 曰く、 家 /. 記事によれば、HP Labs の Vinay Deolalikar 氏が P≠NP 予想の証明に関する 100 ページに上る論文の草稿を複数名の様々な分野の研究者に送っており、 今週中にも最終稿が公開されるとのこと。 Scribd で公開されている論文は人のあずかり知らぬところでアップロードされたものらしく、 また、Deolalikar 氏は過去にもこの分野の論文をいくつも執筆しているようです。 P≠NP 予想は 2000 年にクレイ数学研究所のミレニアム懸賞問題の一つに挙げられており、

  • DO++ : 透過的データ圧縮

    可逆データ圧縮分野で、現在研究が盛んな分野の一つが、データを圧縮した状態のまま定数時間でランダムアクセスをサポートするデータ圧縮方式です(word RAMモデルでO(log n)サイズの復元が定数時間)。 これは、データをあたかも圧縮していないかのように扱えるため、透過的データ圧縮/構造と呼ばれています(英語だとまだ決まってない?)。 例えば1GBのデータを圧縮した状態で、途中300MB目から4Byteだけ復元しようというのが定数時間で実現できるわけです。これは理論的にもかなり強いことをいっていて,例えば今あるデータ構造やアルゴリズムが、O(T)時間である問題を解けるというのがあったら、それを全く同じO(T)時間のままデータ構造を圧縮し作業領域量を減らすことができます (一応データ構造に対し読み込み操作しか無い場合。書き込みもある場合はまたちょっと面倒になる) このデータを圧縮したまま扱う

    DO++ : 透過的データ圧縮
    mk16
    mk16 2009/02/01
    >例えば1GBのデータを圧縮した状態で、途中300MB目から4Byteだけ復元しようというのが定数時間で実現できるわけです。
  • 1