タグ

機械学習に関するn-nanameのブックマーク (3)

  • 手を動かしながら学べるディープラーニングの優良なチュートリアル - karaage. [からあげ]

    ディープラーニングは習うより慣れろかも ファッションでディープラーニングをしているディープラーニング芸人からあげです。私は、特に専門家でも何でもないのですが、機械学習に興味もって、ディープラーニングに関することブログでアウトプットしているうちに「AIに関するに名前がクレジットされたり」「AI解析のオンラインコンテスト#Aidemynoteで特別賞受賞したり」「ラズパイマガジンという商業誌にAI関係で記事を書いたり」「ディープラーニングおじさんの記事がバズったあげくITmediaで取り上げられたり」と多少なりとも価値を提供できるようになってきました。 何の知識もバックグラウンドも、大した能力も無い自分が、どうやって知識を身につけることができたかというと、色々も読んだのですが、実際に手を動かしてプログラムを組んで、実問題に対して試行錯誤した結果をブログにアウトプットし続けたことが大きいのか

    手を動かしながら学べるディープラーニングの優良なチュートリアル - karaage. [からあげ]
  • B'zの歌詞をPythonと機械学習で分析してみた 〜LDA編〜 - 下町データサイエンティストの日常

    1. Part概要 前PartではB'zの歌詞を「TF-IDF」を用いた分析を行いました。 Partではトピックモデルの一つである「LDA」を用いた分析についてお話しします。 pira-nino.hatenablog.com 2. LDAとは 2.1 LDAのイメージ 先に簡単な説明をしてしまいます。 LDAは「たくさんの文書データから単語のグルーピングを行う」モデルです。 このグループ1つ1つを「トピック」と呼びます。 例えば、大量のニュース記事にLDAを適用する例を考えます。 ニュース記事データにLDAを適用した例 LDAでは「各トピック(トピック数は予め指定)における各単語の所属確率」が算出されます。 理論的なことはさておき、文書データから単語をいくつかのグループに自動で分けてくれる手法 との理解で大丈夫です。 よく勘違いされることとして以下の2点を示します。 トピック数(いくつ

    B'zの歌詞をPythonと機械学習で分析してみた 〜LDA編〜 - 下町データサイエンティストの日常
  • 大井競馬で帝王賞を機械学習で当てた話 - Qiita

    概要 大井競馬場に行く機会があったので、機械学習を使って競馬の結果を予測できるかをやってみました。 その結果、帝王賞で一位を当てることができたので、記事を書きます。 かなり適当な予測なので、遊びとして見てもらえたらと思います。 証拠 当たったという証拠に、記念でとった馬券画像。 機械学習で予測したものと、パドックを見て予測したものと、2つ買いました。 (びびって複勝、しかも300円) 問題の設定 大井競馬場で行われる帝王賞の1位のみを当てます。 競馬には、色々な馬券の買い方がありますが、今回は簡単でシンプルな問題設定としたかったので、1位のみを予測することにしました。 データの取得 教師あり学習を行うので、過去の競馬結果のデータが必要です。 こちらのサイトからデータをクローリングしました。 南関東4競馬場公式ウェブサイト レース情報のページから、レースに出る馬の過去情報があるページへのリン

    大井競馬で帝王賞を機械学習で当てた話 - Qiita
  • 1