線形回帰(せんけいかいき、英: linear regression)とは、説明変数(独立変数ともいう)に対して目的変数(従属変数、あるいは反応変数ともいう)が線形またはそれから近い値で表される状態。線形回帰は統計学における回帰分析の一種であり、非線形回帰と対比される。 線形回帰のうち、説明変数が1つの場合を線形単回帰(simple linear regression)や単純線形回帰や単変量線形回帰(univariate linear regression)、2つ以上の場合を線形重回帰(multiple linear regression)や多重線形回帰や多変量線形回帰(multivariate linear regression)と呼ぶ。単回帰と呼んだ場合、単変量の回帰のことであるが、多くの場合は非線形を含めずに線形単回帰の事を指す。 線形回帰では,データから推定される線形予測関数を用いて
